Blog

Dentist and dental technician: Communication in prosthodontic workflows

No matter whether you are a dental practitioner or dental technician, there is one thing you surely want to avoid: failure of indirect restorations. While it is clear that on both sides, the use of high-performance materials and appropriate techniques will contribute to achieving the desired outcomes, there is one aspect that should generally be given more attention: proper communication and exchange of information between the dental practice and laboratory.

 

As a dental professional: Are you aware of the information and details your case partners need to know in order to achieve the best possible result regarding fit, function and aesthetics?

For both, dental practitioner and dental technician, it is essential to know what precisely the respective partner does need to produce the desired outcomes. Hence, if it is not clear what information is needed and how it should be delivered, it is essential to sit down with your partner and find out. The goal of this personal or virtual meeting should be the establishing of a standardized flow of information between your companies. The necessary information might differ depending on the complexity of the case, but most details are always the same.

 

During the meeting, it is essential to focus on every step in the procedure that benefits from interaction between the practice and laboratory. It starts after the patient’s initial appointment and ends when the restoration is in place. In the following sections, the required information for indirect restoration planning, possible ways of communication to provide for a healthy flow of required information and important details are listed.

 

Teamwork starts before the actual treatment

Most dental technicians know a lot about the different restorative materials available and their suitability for specific clinical situations. Leverage this knowledge by involving your partner early – ideally before tooth preparation. This is most important for complex reconstructions, but also relevant when a single tooth needs to be restored: The restorative material and restoration design (monolithic, cutback, framework) have an impact on the space required and hence on the amount of tooth structure that needs to be removed. Aiming to opt for the least invasive treatment possible, it is essential that tooth preparation is limited to the necessary minimum.

 

INFORMATION IMPORTANT FOR MATERIAL SELECTION AND TREATMENT PLANNING INCLUDES:

  • Clinical findings
  • Position of required restoration in the mouth
  • First restoration / restoration replacement
  • Natural tooth or implant as an abutment
  • Level of decay / destruction
  • Level of discolouration / colour of abutment
  • Material sensitivity – allergy history of patient

 

The better the records, the better the fit of the final restoration

When it comes to taking records of the initial situation and the situation after tooth preparation, dental practitioners are often confronted with challenges. Limited mouth opening, a lack of time, or difficult moisture conditions are only some of the numerous factors that might prevent a clinician from taking a precise impression and bite registration. Nevertheless, it is decisive for the work in the dental laboratory to receive accurate records with all the necessary details such as the preparation margin. Understanding what exactly a dental technician needs to deliver a precisely fitting restoration will surely have a positive impact on the motivation to get the records right from the start, independent of the challenges.

 

INFORMATION IMPORTANT FOR THE PRODUCTION OF THE RESTORATION INCLUDES:

  • Impression
  • Bite records
  • Facebow records / functional analysis (complex rehabilitations)
  • Intraoral images
  • Extraoral images (aesthetic zone)
  • Tooth shade information

 

Personally seeing the patient provides valuable additional information on a patient’s facial characteristics, on the status and appearance of the teeth and on their internal colour structure. These details can support a dental technician optimally in producing true-to-life dental restorations.

 

Structured try-in feedback facilitates targeted adjustments

Whenever try-in reveals that adjustments are required, well-structured feedback is important. It helps modify the restorations exactly as desired, hence avoiding additional appointments and wasting time in the practice and laboratory.

 

INFORMATION IMPORTANT FOR TARGETED ADJUSTMENTS AFTER TRY-IN INCLUDES:

  • Shade
  • Shape, contour and morphology
  • Proportions
  • Pink and white aesthetics
  • Facial appearance, lips and teeth
  • Phonation and mastication

 

“Digitalization has made physical distance irrelevant, and we are able to deliver high-quality restorations even if the patient is hundreds of miles away”
- Dr Efe Celebi -

 

Placement recommendations are a basis for long-term success

Type of restorative material, flexural strength and restoration geometry: Many factors have an impact on how to pre-treat and cement an indirect restoration. While (self-)adhesive luting is usually the preferred placement method for highly-aesthetic restorations, the ones produced from high-translucency zirconia need to be treated differently from those made of lithium disilicate. Knowing the details about the selected restorative material, the dental technician should inform the practitioner about the measures to be taken in the dental office.

 

INFORMATION IMPORTANT FOR THE CEMENTATION OF THE RESTORATION INCLUDES:

  • Type of restorative material in use
  • Restoration already pre-treated in dental laboratory
  • Recommended pre-treatment in the office (sandblasting / HF etching + time)
  • Recommended cementation procedure / cementation system
  • Required cleaning measures after try-in

 

How to standardize

There are many possible ways to standardize the flow of information between the dental practice and laboratory. Depending on the individual preferences and established workflows, a personal or digital approach may be selected. Those preferring a personal approach will possibly want to develop paper forms for some steps, while relying on personal interaction for others. The digital approach uses a combination of digital imaging technologies, case management software and communication platforms to exchange relevant information.

 

A personal approach

At the Laboratorio odontotecnico Castellano in Bologna, Italy, the team around Vincenzo Castellano pursues the approach of personally seeing almost every patient prior to treatment planning. The laboratory technicians’ opinion is determinant for the treatment plan to be developed. Their partner practitioners value their expertise in restorative materials and digital technologies, which are evolving very quickly. The team is simply able to tell which material to choose in a specific situation to best manage the expectations of the patient and the functional needs. “Determining the restorative material in this early phase is very important, as its mechanical parameters (minimum wall thickness etc.) have an impact on the preparation design and depth. In fact, patients are always happy if they are able to meet the dental technician who produces their restorations, and – already well-informed by their dentist and the internet – often seize the opportunity to gather additional information about their planned treatment”, Vincenzo Castellano states.

 

Also, during subsequent appointments like try-in, the responsible dental technician is present to evaluate the situation and gather feedback from the patient directly. In his laboratory, online meetings conducted with patients substitute personal meetings only when this is the only way to enable personal interaction, as – in his opinion – personal meetings always deliver more details important for a great outcome. He says: “The most important approach to the patient is the human one. When using advanced digital technologies, we risk standardizing protocols to the extent that we forget there is an individual in front of us, with their own unique characteristics and wishes, entrusting us with their most precious asset: their smile.”

 

A digital approach

A perfect example of a laboratory with a purely digital approach is DentLab, a Turkish dental laboratory founded in 2015 by Dentgroup, Turkey’s largest Dental Service Organization (DSO). Its founder Dr Efe Celebi and his team have developed a special lab module for the group’s own practice management software, DentSoft. The module allows dental professionals to submit their orders electronically by using online forms and adding digital image data such as X-rays, intraoral scans, face scans and photographs. Users are able to see at a glance which data and information is strictly required. If desired, a user even receives procedural guidance: Specific devices like intraoral scanners, procedures and materials are recommended.

 

Once an order is submitted, the software sends a delivery date notification, so that the next appointment can be scheduled right away. Then, the incoming order is checked. Whenever some details are missing, the practice is contacted via a chat function in the software. Orders with incomplete or inaccurate data are rejected. A feedback function allows the technician to specify what needs to be repeated, improved or modified. Once accepted, the ordered items are produced and shipped to the office in a trackable box. It arrives with pre-treatment and cementation recommendations. Whenever necessary, patient feedback at try-in can be recorded on video or discussed live in a virtual meeting. “Digitalization has made physical distance irrelevant, and we are able to deliver high-quality restorations even if the patient is hundreds of miles away,” says Dr Efe Celebi. To facilitate improvement in the dental laboratory, the software has a case evaluation function that allows dental practitioners to evaluate the fit, function and look of every restoration.

 

“The most important approach to the patient is the human one. When using advanced digital technologies, we risk standardizing protocols to the extent that we forget there is an individual in front of us, with their own unique characteristics and wishes, entrusting us with their most precious asset: their smile.”
- MDT Vincenzo Castellano -

 

Conclusion

By establishing a well-structured, standardized and bidirectional flow of information between the dental office and laboratory, it is possible to improve the overall quality of prosthodontic treatments. It can be implemented with the aid of existing workflow management software, or set up according to individual demands using paper forms and personal meetings.

 

Anyway, sitting down together to discuss the topic of communication in a personal or virtual meeting has additional advantages, as it will help everyone involved develop a better understanding of the procedures carried out and challenges faced by their respective partner in the busy work environment. With this knowledge, it becomes easier to build a strong relationship that grows from mutual feedback and advice promoting common strategies for improvement. The result will be more streamlined work processes with less stress, higher-quality outcomes and happier patients.

 

We would like to express our gratitude to MDT Vincenzo Castellano and Dr Efe Celebi for sharing their individual approaches and the thinking behind them.

 

MDT Vincenzo Castellano Dr Efe Celebi

 

Inside the Making of World-Class Dental Materials

BEHIND-THE-SCENES OF NIIGATA FACTORY

Take a tour of Kuraray Noritake Dental Inc.'s state-of-the-art Niigata Plant, where high-quality dental materials come to life.

 

This fascinating video highlights our meticulous production process, from initial R&D to final inspections, showcasing the care and precision that go into creating bonding agents, composite resins, and cements. Learn how strict hygiene control, advanced machinery, and skilled craftsmanship ensure a consistent supply of premium dental materials to over 90 countries worldwide.

 

Watch the video to discover how innovation and dedication drive better oral health for people around the globe!

 

 

IDS 2025 – an event worth visiting!

This year, the Kuraray Noritake Dental stand will be packed with news from the world of dentistry, so we offer not just one reason to visit, but a whole range: new chairside products, new labside products, inspiring lectures, enlightening hands-on demonstrations… And the best thing? You don´t have to choose just one thing, come and see them all at the Kuraray Noritake Dental booth in Hall 11.3 | Stand E010!

 

Chairside – smart streamlined solutions

When it comes to a dental practice, our vision is clear: a world where your materials and tools work seamlessly in your hands, where complexity is minimized, and where you are given enough time to focus on what matters most: the individual desires and needs of every single patient. This is the future of dentistry - and we are leading the way. Come discover our new additions to the UNIVERSAL EXCELLENCE family: a flowable universal composite and a new generation of a universal bond!

 

Labside – speed and aesthetics hand in hand

No matter whether a minimally invasive procedure or the best aesthetic outcomes are desired: Kuraray Noritake Dental has the products for you. New in the portfolio: CERABIEN™ MiLai - low-fusing porcelains and internal stains. Come and see for yourself its ultra-thin layering, exceptional mechanical properties and consistent handling for both zirconia and lithium disilicate. And while you're there, have a coffee while speed-sintering with our KATANA™ Zirconia discs takes place in real time.

 

Get inspired by 12 expert speakers on 2 stages

Are you a user of or interested in one of Kuraray Noritake Dental’s products or solutions, but eager to learn more about their practical use from proven experts in your field? From Wednesday until Saturday, we offer a programme of exciting lectures and live demonstrations - this time simultaneously on two stages: one dedicated to chairside and the other one to labside topics!

 

Warm welcome

Everyone, from sales person to scientific marketeer, looks forward to giving you a warm welcome, answering your questions and introducing you to the world of innovative Kuraray Noritake Dental products, solutions and workflows. And while you are already in Cologne anyway, why not enjoy the breathtaking beauty of the old town? Have you ever seen its famous Gothic Cathedral? Or its Old Town inviting you to stroll through its narrow alleys, finding traces of history around every corner? This year's IDS offers so many reasons to attend that it's hard not to accept the invitation.

 

Additional information and the full programme of lectures and hands-on courses at the IDS is available online.

 

Overwegingen bij het gebruik van een universele composiet in het anterieure gebied met CLEARFIL MAJESTY™ ES-2 Universal

4 Klinische casussen

 

Composieten met een universeel kleurconcept - een beperkt aantal kleuren die zonder kleurenschaal kunnen worden geselecteerd - vormen een duidelijke trend binnen de restauratieve tandheelkunde. Dankzij de specifieke aanpassingseigenschappen kunnen deze materialen bijdragen aan het stroomlijnen van restauratieve procedures en een vermindering van behandeltijden. Dit kan de werkdruk van de tandheelkundige praktijkbeoefenaar wat verlichten en goede resultaten bevorderen. Sommige gebruikers staan echter sceptisch tegenover een breed gebruik van deze materialen, vooral als het gaat om de restauratie van tanden in het anterieure gebied. Mogelijke redenen: een relatief hoge translucentie, die in bepaalde situaties de aparte toepassing van een blocker (of ondoorzichtige kleur) nodig maakt, of een te beperkt kleuraanbod.

 

Mijn persoonlijke ervaring heeft aangetoond dat CLEARFIL MAJESTY™ ES-2 Universal bij uitstek geschikt is voor een breed scala aan 1-kleur-restauraties van anterieure tanden. Dit product heeft een geweldige polijstbaarheid plus langdurig glansbehoud, en is leverbaar in slechts vier kleuren: een Universele kleur (U), aanvankelijk ontwikkeld voor posterieure restauraties, Universal Light (UL) en Universal Dark (UD) als de twee belangrijkste opties voor anterieure tanden en tot slot Universal White (UW) om alle bleachkleuren na te bootsen. In het algemeen kunnen deze opties alle vier worden toegepast in het anterieure en posterieure gebied. Aangezien het aanpassingsvermogen te danken is aan een propriëtaire lichtdiffusietechnologie en niet wordt geregeld via een verhoogde translucentie, is het gebruik van een blocker meestal niet nodig en kunnen zelfs grotere gedeelten heel onopvallend worden gerestaureerd.

 

De hierna volgende voorbeelden van klinisch casussen bieden, samen met het commentaar, wellicht houvast voor degenen die twijfelen over de juiste kleurkeuze in het anterieure gebied. De aanbevelingen en praktische tips zijn gebaseerd op mijn persoonlijke ervaring. Alle patiënten werden behandeld voor de sluiting van een diasteem of voor een vormaanpassing, maar de selectiecriteria gelden ook voor andere vormen van anterieure restauraties.

 

UNIVERSAL LIGHT: VOOR NATUURLIJKE RESULTATEN BIJ LICHTERE TANDEN

 

Deze jonge 35-jarige patiënt met microdontie meldde zich bij de praktijk omdat hij graag een mooier gevormd gebit wilde. Zijn gebit vertoonde vrijwel geen cariës, maar wél een gebrek aan mondhygiëne en tekenen van ontstoken tandvlees. Er was ook duidelijk sprake van een diepe beet. Na een professionele gebitsreiniging en advies over mondhygiëne werden de tanden hersteld met behulp van CLEARFIL MAJESTY™ ES-2 Universal in de kleur UL.

 

Afb. 1: Aanvankelijke situatie.

 

Afb. 2: Aanvankelijke situatie: diepe beet.

 

Afb. 3: Tanden gerestaureerd met composiet via de 1-kleurtechniek.

 

Afb. 4: Direct behandelingsresultaat.

 

Redenen voor de keuze van Universal Light:

- Voor jongere patiënten (tandkleuren A2 en lichter)

- Situaties waarin licht gemakkelijk door de composiet gaat (bijvoorbeeld Klasse III en Klasse IV)

 

Eigenschappen van Universal Light:

- Hoog lichtverspreidend effect

- Uitgebalanceerde translucentie

 

UNIVERSAL DARK: VOOR NATUURLIJKE RESULTATEN BIJ DONKERDERE TANDEN

 

Abrasie en vormcorrectie waren ook voor deze 58-jarige patiënt de belangrijkste redenen om een kosmetische tandheelkundige behandeling aan te vragen. Ze was ongelukkig met de aanblik van de anterieure tanden in haar bovenkaak, die tekenen van gebitsslijtage en verkleuring vertoonden. De gekozen aanpak was een composietveneerbehandeling met CLEARFIL MAJESTY™ ES-2 Universal in de kleur UD. De kleur werd geselecteerd op basis van de indicatie en de ietwat donkerder kleur van het natuurlijke gebit van de patiënt.

 

Afb. 5: Klinische beginsituatie.

 

Afb. 6: Resultaat van de behandeling.

 

Redenen voor de keuze van Universal Dark:

- Voor oudere patiënten (tandkleuren A3 en donkerder)

- Situaties waarin licht gemakkelijk door de composiet gaat (bijvoorbeeld Klasse III en Klasse IV)

 

Eigenschappen van Universal Light:

- Hoog lichtverspreidend effect

- Uitgebalanceerde translucentie

 

UNIVERSAL: ALTIJD ALS EEN HOGE TRANSLUCENTIE IS GEWENST

 

Als de te restaureren tanden worden omringd door uitgebreide niet-verkleurde gebitsstructuren - wat kan voorkomen bij Klasse I-, II- en V-caviteiten - kan het gebruik van CLEARFIL MAJESTY™ ES-2 Universal in de kleur U een optie zijn. De tanden van de 28-jarige patiënt die zich had gemeld voor een diasteemsluiting, hadden een relatief lage translucentie en verschillende kleuren als gevolg van roken en overmatige koffieconsumptie. Aangezien de composiet alleen in glazuurgedeelten werd aangebracht, leek de relatief hoge translucentie van de kleur Universal in deze casus een voordeel te zijn.

 

Afb. 7: Klinische beginsituatie.

 

Afb. 8: De nieuwe smile van de patiënt.

 

Redenen voor de keuze van Universal:

- Uitgebreide aanwezigheid van onderliggende of omringende tandstructuren

- Gemiddelde lichtverspreiding gewenst

 

Eigenschappen van Universal:

- Hoge translucentie

- Gemiddeld lichtverspreidend effect

 

UNIVERSAL WHITE: VOOR ALLE PATIËNTEN DIE VRAGEN OM EEN BLEACHEFFECT

 

Voor alle behandelingen waarbij een bijzonder lichte tandkleur nodig is - bijvoorbeeld kinderen of patiënten met gebleekte tanden, of patiënten die vragen om een restauratie met een bleacheffect - komt CLEARFIL MAJESTY™ ES-2 Universal in de kleur UW als eerste optie in aanmerking. De hieronder getoonde jonge 28-jarige patiënt had gevraagd om een diasteemsluiting compleet met een vorm- en kleurcorrectie; ze wilde een lichtere en meer aantrekkelijke smile.

 

Afb. 9: Klinische beginsituatie.

 

Afb. 10: Een vorm- en kleurcorrectie waren gewenst bij deze casus.

 

Afb. 11: Resultaat van de behandeling ...

 

Afb. 12: … die zorgde voor de prachtige smile die de patiënt zo graag wilde.

 

Redenen voor de keuze van Universal White:

- Behandelingen die vragen om een uitzonderlijk hoge helderheid of value

- Restauraties van melktanden

- Restauraties van gebleekte tanden

 

Eigenschappen van Universal White:

- Uitgebalanceerde translucentie

- Hoog lichtverspreidend effect

 

CONCLUSIE

 

Eén universele composiet, vier kleuren: in het geval van CLEARFIL MAJESTY™ ES-2 Universal is het assortiment zonder meer voldoende voor 1-kleurestauraties, zelfs in het esthetisch veeleisende anterieure gebied. Tandheelkundige praktijkbeoefenaren kunnen fantastische restauraties realiseren dankzij eigenschappen zoals een mooi aanpassingseffect, ideale polijstbaarheid en langdurig glansbehoud. De kleur kan in principe worden bepaald op basis van slechts enkele criteria, dus zonder een complexe kleurenschaal; daarmee wordt de algehele restauratieprocedure relaxter en efficiënter. Bovendien hoeft er - met slechts vier kleuren en doorgaans zonder de noodzaak van een blocker - minder materiaal op voorraad te worden gehouden; het voorraadbeheer wordt dus ook vergemakkelijkt.

Dentist:

JUSUF LUKARCANIN

 

Dr. Jusuf Lukarcanin is een Certified Dental Technician (DCT) en tevens Doctor of Dental Science (DDS). Hij is in 2011 als Master afgestudeerd aan de Tandheelkundige Faculteit van de Ege Universiteit in het Turkse Izmir. In 2017 voltooide hij zijn doctoraalstudie bij de faculteit Restauratieve Tandheelkunde van die universiteit. Tussen 2012 en 2019 was dr. Lukarcanin chef de clinique en general manager van een privékliniek in Izmir.

 

Tussen 2019 en 2020 werkte hij als specialist Restauratieve Tandheelkunde bij het Tinaztepe Galen Hospital; van 2020 tot 2022 bekleedde hij diezelfde functie bij het Medicana International Hospital in Izmir. Momenteel is hij eigenaar van een privékliniek voor esthetiek en cosmetiek in Izmir.

 

Mastering Ceramics: A Comprehensive Guide for Dental Ceramists

Discover a detailed walkthrough of an advanced shade reproduction technique with this comprehensive guide by DT Tomáš Forejtek. Tailored for professionals working with CERABIEN™ ZR ceramics (Kuraray Noritake Dental Inc.) and the eLAB protocol, this case study provides step-by-step insights into achieving exceptional results, from documentation to shade selection and framework design to final polish. Whether you are refining your craft or exploring new methods, this resource is a valuable addition to your toolkit.

 

 

Go for a trustworthy ceramic and metal primer

Article by Peter Schouten

 

Ceramic primers vary widely in composition and effectiveness, despite what their name might suggest. Most common primers include silane, but silane alone is insufficient for pre-treating all materials commonly used in indirect restorations before bonding.

 

Silane—typically in the form of γ-MPS—has a strong affinity for silica- or glass-based materials. While certain metals and their oxides can chemically react with silane, other components provide a stronger and more reliable bond to metals and metal oxides and should be seriously considered.

 

For metal(oxide) pretreatment in bonding, the MDP monomer is far more reactive than silane. The original MDP monomer, developed by Kuraray Co., Ltd. in 1981, remains the highest-quality MDP available, as confirmed by research.1

 

CLEARFIL™ CERAMIC PRIMER PLUS is a single-component adhesive primer that forms strong bonds with a wide range of restorative materials. This two-in-one primer incorporates the original MDP monomer, which establishes a robust bond with metals and zirconia. Simultaneously, the silane coupling agent (γ-MPS) ensures excellent adhesion to resin composites, hybrid ceramics, and glass-based ceramics such as lithium disilicate and porcelain.

 

ENHANCED BOTTLE DESIGN

The primer bottle is designed for effortless one-handed operation. Its unique nozzle ensures precise dispensing, minimizing the risk of contamination and spills.

 

 

PROVEN EFFECTIVENESS OF MDP-CONTAINING PRIMERS

To enhance the bonding of prosthetic materials, use a primer containing both MDP and silane. Numerous studies have demonstrated the effectiveness of this combination.

 

A study by Cao, Y., et al2 confirmed the superiority of CLEARFIL™ CERAMIC PRIMER PLUS (Kuraray Noritake Dental Inc.) over three other primers in improving the bond strength between zirconia and two different resin cements.

Study by Cao, Y., et al.

The effects of four primers and two cement types on the bonding strength of zirconia.

- Clearfil Ceramic Primer outperformed three other primers in improving the bond strength between zirconia and two different resin cements.

Reymus, M., et al. concluded in their study3 that before adhesive cementation of air abraded CAD/CAM resin composites, pretreatment with a specific primer, not only containing silane but also methacrylate monomers results in successfully bonded restorations. Pretreatment using an only silane containing primer results in inadequate adhesion.

Findings from Reymus, M., et al.

Bonding to new CAD/CAM resin composites: influence of air abrasion and conditioning agents as pretreatment strategy.

- Adhesive cementation of air-abraded CAD/CAM resin composites benefits from pre-treatment with a primer containing both silane and methacrylate monomers.

- Primers with only silane provided inadequate adhesion, while the combination significantly enhanced bonding success.

Four different types of CAD/CAM ceramic materials where tested in a study by Uğur, M., et al.4 Vita Mark II, IPS E.max CAD, Vita Suprinity and Vita Enamic were primed with three different primers CLEARFIL™ CERAMIC PRIMER PLUS, G-Multi Primer (GC) and Monobond S (Ivoclar Vivadent), either after hydrofluoric acid etching or no etching. It was concluded in this study that the combined effects of MDP and γ-MPTS resulted in a significant increase in the bonding strength of the resin cement to the used ceramics.

Research by Uğur, M., et al.

Effect of ceramic primers with different chemical contents on the shear bond strength of CAD/CAM ceramics with resin cement after thermal ageing.

- Four types of CAD/CAM ceramic materials (Vita Mark II, IPS e.max CAD, Vita Suprinity, and Vita Enamic) were tested with three primers: Clearfil Ceramic Primer Plus, G-Multi Primer, and Monobond S.

- Pre-treatment included hydrofluoric acid etching or no etching. Results showed that primers combining MDP and γ-MPTS substantially improved bond strength to ceramics.

Pilo, R., et al. concluded in their study5 investigating the effect of tribochemical treatment and silane reactivity on the bonding to zirconia that MDP greatly contributes to the bonding mechanism of the silane containing primers. CLEARFIL™ CERAMIC PRIMER PLUS showed to be the most reliable and effective primer in this study.

Pilo, R., et al. Study

Effect of tribochemical treatments and silane reactivity on resin bonding to zirconia.

- Examined tribochemical treatment and silane reactivity on zirconia bonding.

- MDP significantly contributed to the bonding mechanism of silane-containing primers.

- Ceramic Primer Plus was the most reliable and effective primer.

In his study6 that forms a part of his well-known dissertation, Masanao Inokoshi and others concluded that a combined mechanical/chemical pre-treatment of sintered IPS e.max ZirCAD (Ivoclar Vivadent) results in the most durable bond to zirconia. In this case when the chemical pretreatment was performed with CLEARFIL™ CERAMIC PRIMER PLUS or Monobond Plus (Ivoclar Vivadent). Scotchbond Universal (3M ESPE) and Z-PRIME Plus (Bisco), also used in this study as chemical pretreatment primers showed significant lower bond strengths.

Research by Masanao Inokoshi

Bonding effectiveness to different chemically pre-treated dental zirconia.

- Investigated mechanical/chemical pre-treatment of sintered IPS e.max ZirCAD for durable zirconia bonding.

- Clearfil Ceramic Primer (Kuraray Noritake) and Monobond Plus (Ivoclar Vivadent) yielded the most durable bonds, outperforming Scotchbond Universal (3M ESPE) and Z-PRIME Plus (Bisco), which showed significantly lower bond strengths.

 

OPTIMAL PRIMING FOR ADHESIVE CEMENTING

These studies underscore the critical role of MDP-containing primers in achieving reliable and durable adhesion for prosthetic materials. Products containing only silane, such as RelyX™ Ceramic Primer (3M ESPE), are less effective at creating a durable bond between resin cements or composites and ceramic- or metal-based prosthetic materials.

 

Image from clinical case by MDT Rondoni and Dr. Attanasio

 

STRAIGHTFORWARD AND EFFICIENT

The use of CLEARFIL™ CERAMIC PRIMER PLUS is straightforward: just apply it to the bonding surface, dry it, and proceed with the following treatment step. Incorporated into your process to streamline adhesion preparation and achieve reliable results!

 

JUST APPLY AND DRY

CLEARFIL™ CERAMIC PRIMER PLUS may be applied to any restoration surface after the required pretreatment. Pretreat the adherent surface of the restoration as indicated:

 

 

* If your laboratory already treated with a hydrofluoric acid, cleaning and activating with K-ETCHANT Syringe just before applying CLEARFIL™ CERAMIC PRIMER PLUS is recommended.

**When using with PANAVIA™ V5 or CLEARFIL™ DC CORE PLUS

 

Universal prosthetic primer designed for a strong bond and procedural simplicity

 

Author:

PETER SCHOUTEN

 

References

1. Yoshihara K., et al.(2015) Functional monomer impurity affects adhesive performance, Dental Materials, Volume 31, Issue 12, https://doi.org/10.1016/j.dental.2015.09.019. Pilo, R., et al. (2018). “Effect of tribochemical treatments and silane reactivity on resin bonding to zirconia.” Dent Mater 34(2): 306-316.
2. Cao, Y., et al. (2021). The effects of four primers and two cement types on the bonding strength of zirconia. Annals of Translational Medicine. 10. 10.21037/atm-21-4909.
3. Reymus, M., et al. (2019). “Bonding to new CAD/CAM resin composites: influence of air abrasion and conditioning agents as pretreatment strategy.” Clin Oral Investig 23(2): 529-538.
4. Uğur, M., et al. (2023). Effect of ceramic primers with different chemical contents on the shear bond strength of CAD/CAM ceramics with resin cement after thermal ageing. BMC Oral Health. 23. 10.1186/s12903-023-02909-z.
5. Pilo, R., et al. (2018). “Effect of tribochemical treatments and silane reactivity on resin bonding to zirconia.” Dent Mater 34(2): 306-316.
6. Inokoshi, M., et al. (2014). “Bonding effectiveness to different chemically pre-treated dental zirconia.” Clin Oral Investig 18(7): 1803-1812.

 

Case report by Vasilis Vasiliou

THE ART OF RESTORING SMILES: MASTERING THE CHALLENGE OF A SINGLE CENTRAL INCISOR

Restoring a single maxillary central incisor is possibly the biggest challenge a dental technician can face in everyday work. Especially when a patient is young, it is extremely important to restore her or his smile to its original beauty. Any restoration that is perceivable as such might have a negative impact on their self-confidence and quality of life even in the long term.

 

A STORY OF JOY AND DESPERATION

Take Ioanna, a 14-year-old girl who presented in her dental office in a state of desperation. In the hours before, she had been floating on cloud nine: Her favourite band performed in Cyprus for the first time and she had managed to buy tickets for herself and her best friend. Thrilled, they had arrived at the concert, the band started playing and the crowd danced to the music. It felt like this was going to be the best day of her life. At the time the band played its most popular song, people were delirious, jumping up and down in ecstasy. Between all the exuberant dancing and laughing, however, Ioanna suddenly was hit by a strong push. She fell, her face hitting something hard – a seat in front of her. Pain froze time and it took a few seconds before she understood what had happened: Tasting blood in her mouth, she explored her teeth with her tongue and realized that one of her central incisors had fractured.

 

AFFECTING THE QUALITY OF LIFE

This is one of the many touching stories we listen to every day. A fall during a concert, a push at somebody’s birthday party, a car accident: There are many incidences that can ruin a young, beautiful smile. By paying attention to the involved patients and their stories, one will come to realize how strongly some of them are affected by all this. They cover their mouths when they laugh or hold back their smiles.

 

Any dental technician who is committed to restoring their lost smile in the best possible way is probably aware of the impact his or her work can have and the responsibility coming with it: A Beautiful result will restore not only their smile, but also their self-confidence, will let them start laughing happily, expressing themselves comfortably and simply enjoying social interaction again (Figs. 1 to 5). Compromised outcomes, on the other hand, might have the opposite effect. Being aware of this role should be every technician’s motivation to become better day by day. Evolve for these moments, when our work brings tears of joy to our patients.

 

Fig. 1. Layering sketch for the restoration of a fractured central incisor in three layers: Layer one.

 

Fig. 2. Layering sketch for the restoration of a fractured central incisor in three layers: Layer two.

 

Fig. 3. Layering sketch for the restoration of a fractured central incisor in three layers: Layer three. After the first bake, small details were integrated, followed by a second bake. Finally, the restoration was finished with CERABIEN™ ZR FC Paste Stain and Glaze.

 

Fig. 4. Treatment outcome able to restore not only the smile, but also the self-confidence of the young girl.

 

Fig. 5. Immediately after cementation of the restoration, the restoration is barely identifiable, only the soft tissue needs some time for recovery.

 

ASPECTS TO BE CONSIDERED

But how to proceed in restoring single central incisors in the best possible way? The success of this type of restoration is hidden in the shape, which is the most difficult part. Managing to create a natural morphology is more than half the battle. The other important part is colour. The key to reproducing colour is in understanding how the utilized porcelains work. It is all about light reflection, absorption, translucency and opalescence, value and characteristic details. The more you gain experience and understand the optical properties of teeth and ceramics, the better your outcomes will be. Support is offered by a camera, a macro lens and a twin flash, which are used to capture and analyse the intraoral situation. For an initial analysis and understanding of shape and colour, I like to see the patients in my dental laboratory. Feeling the colour helps to develop the most realistic picture of what needs to be created. The key to successful realisation of the plan just developed is the use of reliable, easy-to-handle materials – in my case KATANA™ Zirconia and CERABIEN™ ZR Porcelains (both Kuraray Noritake Dental Inc.).

 

POSSIBLE STEPS

The first thing to focus on when starting to produce an anterior restoration – like in the case presented in figures 6 to 14 – is the correct value of the tooth. As soon as the framework or base is produced in the right value, you need to place what you see. Does the adjacent tooth show mamelons, traces of blue and orange? Those characteristics simply need to be observed and copied. There is no need to create something fancy. The tricky part is to use the available space reasonably. When there is plenty of space for the porcelain, it may be challenging to keep the value of the framework and avoid a greyish appearance. Depending on the die colour, age of the patient, natural surface texture and space available, an appropriate layering approach and finishing technique may be selected.

 

Fig. 6. Replacement of an anterior crown: Prepared tooth with severe discolouration. The adjacent central incisor has a special shape and vivid inner colour structure.

 

Fig. 7. Framework made of KATANA™ Zirconia ML in the shade A3. The target shade being A3.5, a quite opaque material was selected in a slightly brighter shade to achieve the required masking effect.

 

Fig. 8. Single-bake layering procedure: Application of CERABIEN™ ZR Opacious Body, …

 

Fig. 9. … Cervical Body, …

 

Fig. 10. … Body and Transitional Body.

 

Fig. 11. Incisal cut-back …

 

Fig. 12. … and creation of the mamelon structure.

 

Fig. 13. Application of Aqua Blue 1 …

 

Fig. 14. … followed by T Blue …

 

Fig. 15. … and Luster Porcelains.

 

Fig. 16. Halo effect created with Body.

 

Fig. 17. Treatment outcome. (After a first bake followed by minor adjustments, a second bake, surface texturing and glazing with CERABIEN™ ZR FC Paste Stain Clear Glaze.)

 

CONCLUSION

Creating a single central takes us out of our comfort zone. By paying attention, observing the adjacent teeth carefully and using materials we really understand, it is possible to meet or exceed our patients’ expectations. While specific tools like cameras and experience with the utilized materials offer support in producing predictable outcomes, my main credo is “If you want things around you to change, you must first change yourself”. For continued improvement, it is thus necessary to focus on professional growth and advancement. With the right mentors who will teach us the secrets of stratification and inspire and motivate us to continue advancing, it becomes easier to restore the smiles and self-confidence of our patients every time they need us to.

 

Acknowledgements

Special thanks go to the dental practitioners who treated the patients presented above – Andreas Skyllouriotis DDS, MSD, Surgically-Trained Prosthodontist, and Theo Odysseos, DDS, Diplomate, American Board of Oral Implantology / Implant Dentistry.

 

Dental Technician:

VASILIS VASILIOU

 

Vasilis Vasiliou was born in Nicosia, Cyprus, and graduated from the Technical School for Dental Technicians in Athens in 2004. He has furthered his education by attending several advanced seminars led by mentors and experts in the field, such as Ilias Psarris and Nondas Vlachopoulos.

 

Throughout his career, Vasilis has made significant contributions to the dental community, including presenting at various conferences in Greece and publishing articles in Greek dental magazines. Since 2020, he has been a key opinion leader for MPF Brush Company and, since 2022, a HASS Ambassador. Vasilis has been an active member of the International Team for Implantology (ITI) since 2019.

 

Together with his father, Vasilis runs a successful dental laboratory in Nicosia, specializing in all-ceramic and implant restorations. His extensive experience and commitment to excellence have established him as a respected professional in his field.

 

Digital workflows in dentistry and the future of dental care

Interview with Dr. Efe Celebi

 

In March 2024, Dr Ahmad Al-Hassiny, Director of the Institute of Digital Dentistry, shared his observations from LMT Lab Day 2024 in Chicago, noting that over 90 percent of U.S. dental laboratories and nearly 50 percent of dental practices have already adopted digital technologies and workflows. These advancements streamline the production of dental models, restorations across various materials, and much more.

 

Our company Kuraray Noritake Dental Inc. is dedicated not only to developing high-quality products and constantly adapting them to the needs of dentistry, but also to streamlining procedures in the dental laboratory and practice. Aiming to understand the current needs of dental technicians and dental practitioners around the world to provide what would really make a difference, we are in close dialogue with experts in the field. We love to listen to their stories, learn how digital technologies and artificial intelligence are already transforming dental procedures and see how we can contribute to a smooth transition – e.g. with products that support efficient workflows and great outcomes.

 

Lately, we had the chance to sit down with a leading figure in Turkey’s digital dentistry transformation, Dr Efe Celebi, to discuss the current landscape and future of digital innovation in dentistry. Being convinced that his experience is worth being shared with a broader audience, we have summarized the conversation.

 

Dr. Celebi, you’re known as a pioneer in digital dentistry. What drove you to establish companies with a strong digital focus?

As the founder of Dentgroup, Turkey’s largest Dental Service Organization (DSO), I have always believed in the power of digital dentistry. My goal was to establish digital workflows for producing indirect restorations, beginning with intraoral scanning at our practices. Initially, we sought laboratory partners in Turkey willing to make this transition with us. But at that time, none of our partner labs were prepared to take the leap, so we decided to build our own. Digitalization, after all, is simplifying work in almost every field, and dentistry is no exception. So, in 2015, we founded DentLab to provide cutting-edge digital laboratory services.

 

 

How did you go about implementing digital workflows?

From the very beginning, we aimed to digitize every aspect of our work—from production to data management and communication. Our practices already used our own practice management software, DentSoft, successfully. To connect our clinics with the lab, we developed a specialized lab module. This allowed our dental practitioners to submit every order electronically. It was a huge improvement over the old process, where forms with sketches were mailed physically, just as it had been in in the old days. Now, practitioners can select the teeth in need of treatment, specify restoration colour and design, and upload radiographs, photos, and intraoral scans with just a few clicks. Over time, we have continuously enhanced communication features between clinics and labs, adding things like delivery date notifications for orders, so patients can book their next appointment before they even leave the clinic. These tools have greatly improved coordination between our dentists and lab technicians.

 

How is communication organized in the software?

We created a chat-style communication area where different team members can talk, with all records saved and accessible to anyone involved in a treatment. This setup is a major improvement over phone calls, as every detail—from treatment notes to radiographs and photos—is stored and easy to reference. We even enabled practitioners to rate the products they receive, and every necessary remake is documented along with the responsible technician. This feedback system has allowed us to maintain high-quality standards, identify issues, and provide targeted training where needed.

 

Modern digital technologies used at DentLab to provide cutting-edge digital laboratory services.

 

Have you made other improvements in workflow and communication between clinics and laboratories?

DentLab initially served Dentgroup practices exclusively, but we eventually opened its services to other clinics. In this context, we set standards for incoming orders—from the required data to impression quality. If an order does not meet these standards, we reserve the right to reject it, explaining why, so the submitter can improve. We also implemented a loyalty programme and developed a special, trackable package with a QR code to prevent loss of items in transit. This innovation lets both the team in the lab and the clinic track each package’s location in real time, solving a common logistical challenge. We have even patented this unique packaging system.

 

Unique patented delivery box used at DentLab to prevent loss of items.

 

Do you provide guidance on materials and tools for clinics?

Yes, as part of our commitment to quality, we recommend specific intraoral scanners and even distribute them to customers outside our network. We also advise clinics on material choices, pre-treatment needs, and compatible resin cements for permanent placement of the produced restorations. Our protocols cover the entire restorative procedure. For aesthetic cases, we recommend starting with a smile design and using mock-ups. The mock-up evaluation lets practitioners and patients provide feedback, so the responsible lab technician can produce the final restoration with precision.

 

With digital workflows so well-established, do you think technicians still benefit from meeting patients face-to-face?

Not necessarily. Occasionally, a dentist may request a patient visit the lab, and we accommodate this. However, digitalization has made physical distance irrelevant, as clinics and labs can now work seamlessly from anywhere. In fact, we serve offices in Europe without any face-to-face interactions between patients and lab technicians. For patients, especially in a city like Istanbul, avoiding long travel times is a big plus, while we can still ensure high-quality outcomes.

 

Would you say digitalization has improved treatment quality overall?

Absolutely. There is a learning curve to digital processes, but once practitioners adjust, the quality is noticeably higher. In traditional workflows, practitioners might bend the rules, asking technicians to work with suboptimal impressions, for example. Digital systems do not allow for such shortcuts; preparation quality is clear from the scan, and impression errors can be corrected instantly before submitting to the lab. Additionally, digital scans will never shrink, distort, or tear during production, unlike physical impressions.

 

What are the main challenges associated with digital dentistry today?

The biggest challenge is simply taking the first step. Dentistry has been hesitant to change after decades of doing things the same way. Going digital requires an investment in both time and money. But those who make the switch find the rewards—better outcomes and more efficient procedures—well worth it.

 

What is next for digital dentistry?

With AI advancing quickly, the field is evolving in exciting ways. Today, we can combine digital impressions, facial scans, photographs, and 3D imaging to create a “virtual patient”. Some clinics are already using software to analyze digital data, like dental X-rays, and I predict that robot-assisted or even autonomous clinical procedures are on the horizon. Imagine robot arms taking impressions or patients scanning their own teeth with smartphones. Impression-taking procedures carried out at home already support aligner treatments in some cases. As these technologies advance, the need for dental assistants will likely decrease. The digital future for dentistry is incredibly promising, filled with tools that can transform patient care and practice efficiency on a global scale.

 

Example of beautiful, precisely fitting all-ceramic restorations produced at DentLab.

 

Kuraray Noritake Dental at the IDS 2025

INTRODUCING BRAND NEW PRODUCTS FOR SUCCESS WITH STREAMLINED, SMART SOLUTIONS

Kuraray Noritake Dental is pleased to announce that at IDS 2025 it will present a number of innovations that fundamentally improve dental procedures without compromising the quality of the result. Additionally, a number of internationally recognized experts will present their lectures and hands-on demonstrations on two separate stages: one dedicated to chair-side and the other one to lab-side topics. All of this represents not one, but a whole host of reasons to visit the stand (repeatedly).

 

CHAIR-SIDE NOVELTIES: UNIVERSAL EXCELLENCE

Development of the new products is rooted in a deep understanding of the demands of modern dental practice. Balancing complex procedures, tight schedules and patient needs is no easy task. That is why Kuraray Noritake´s team has been on a relentless journey to streamline, enhance and refine every step of work for decades. The vision is clear: a world where materials and tools work seamlessly in the dentist´s hands, where complexity is minimized, and where professionals are given enough time to focus on what matters most: the individual desires and needs of every single patient. Discover new additions to the UNIVERSAL EXCELLENCE family: a flowable universal composite and a new iteration of a universal bond.

 

CLEARFIL MAJESTY™ ES Flow Universal represents a fundamental shift in the idea of what universal composites can achieve. By integrating high filler loading and achieving high flexural strength, CLEARFIL MAJESTY™ ES Flow Universal challenges the traditional view of flowable composites as merely temporary fixes. Instead, it positions itself as a permanent solution capable of delivering both aesthetic excellence and structural reliability. Its unique light diffusion technology allows working with just two shades, and, in addition to that, offers a choice of two flowability options for easy handling.

 

CLEARFIL™ Universal Bond Quick 2 is the latest evolution in dental bonding technology, offering a streamlined, efficient solution for dental practitioners. Following the success of its predecessor CLEARFIL™ Universal Bond Quick, the new version “2” offers a redefined monomer technology that delivers exceptional bonding performance with minimal effort. Kuraray Noritake´s proprietary Advanced Rapid Bond Technology combines three key monomers – the original MDP, Amide and Urethane Tetra Methacrylate. Designed to enhance workflows, this adhesive provides robust performance across a wide variety of clinical situations.

 

LAB-SIDE NOVELTIES

Patient-centered prosthodontic approaches are enabled by innovative restorative materials and their correct processing in the dental laboratory. No matter whether a minimally invasive procedure or the best aesthetic outcomes are desired: Kuraray Noritake Dental has the solutions. In 2025, a new “smart” finishing material is being launched, delivering both on efficiency and aesthetics.

 

CERABIEN™ MiLai is a set of porcelains and internal stains specifically designed for the micro-layering technique. The name “MiLai” is derived from the term “micro-layering” and the Japanese word “mirai” (which means future). The innovative product based on synthetic feldspar enables dental technicians to add the final touch to their restorations in a simple and time-saving procedure – for outstanding aesthetics right from the start. The low firing temperature of CERABIEN™ MiLai (740°C) makes it the go-to solution for the finishing of both oxide ceramic (e.g. zirconia) and silicate ceramic (e.g. lithium disilicate) restorations. With fewer lines of porcelain needed, the porcelain inventory is reduced further and fewer decisions need to be taken.

 

Additional information and the full programme of lectures and hands-on courses at the IDS is available online.

 

Optimizing intraoral and extraoral substrates for maximal adhesive potential

Article by Dr. Clarence Tam HBSc, DDS, FIADFE, AAACD

 

A NOVEL MDP-BASED SURFACTANT SOLUTION

The everyday practice of adhesive restorative dentistry, whether utilizing direct or indirect restorations, is fraught with the need for ideal environmental conditions to generate an optimal prognosis. The bonding of composite resin is the foundation of direct and indirect restoratives, as it provides the link between restoration and tooth. As dentistry strives to be minimally invasive, the treatment of the bonding interface is reflected in this philosophy by the use of self-etching multi-substrate acidic monomers such as 10-methacryloyloxyldecyl dihydrogen phosphate (10-MDP). There are myriad opportunities for both intaglio and fitting surfaces to be contaminated with varying agents to the detriment of restoration prognosis.

 

Some of the contaminants to be considered are of course, moisture from exhalation, ambient humidity in the oral cavity, blood, saliva and artificial sources such as provisional cement during a two-stage indirect delivery technique. Moisture is an agent which is only welcomed via a controlled approach during the dentin penetration phase of priming the substrate for adhesion, however if excessive in quantity will compromise the hybridization of the interface. Blood and saliva are ubiquitous in restorative dentistry, and best controlled via the application of rubber dam as part of an absolute isolation philosophy. Contamination of the prepared surface can also occur through artificial cements or lubrication agents. Hemostatic agents such as ferric sulfate and aluminum chloride have the ability to deposit insoluble precipitates on the surface of the tooth in a manner that 33% orthophosphoric acid can only partially remove. Also considered is the particulate deposition of dentin and enamel as part of standard tooth preparation. This smear layer is residual on the dentin surface, often occludes dentinal tubules, and is an obstacle that must be overcome in order to bond to the hydroxyapatite and collagen fibrils of the surface.

 

Overall, the risks to adhesive compromise and at worst, adhesive failure are high. This report details the use of a novel solution for debriding both indirect restorative and tooth intaglio with a 10-MDP salt-based solution that has the flexibility to be used both extraorally and intraorally.

 

ENDEMIC CONTAMINANTS: MOISTURE, BLOOD AND SALIVA

Moisture is a critical component to maximize the adhesive bond strength of certain modern universal adhesives. The presence of moisture allows for increased penetration of bonding solutions into dentinal tubules and between collagen fibrils, ultimately bolstering the resilience of the hybrid layer1. During the cementation of an indirect restoration, both salivary and blood contamination of the mating surfaces have been shown to have a deleterious effect on bond strengths, with blood contamination faring the worst in all conditions2. Van Meerbeck et al reported on technique sensitivity with one-step contemporary universal adhesives3. The basis of his findings note that these adhesives require water as an ionization medium for the self-etching reaction, with the need to evaporate water from the interfacial surfaces in order to maximize bond strengths. Despite this, these interfaces are considered semi-permeable which predisposes the hybrid layer to an increased risk of hydrolytic degradation in adhesive solutions that are not 2-hydroxyethyl methacrylate-free (HEMA-free), which has a greater affinity for water.

 

Periera et al tested varying degrees of wetness of dentin substrate controlled with variables such as short vs. long air blasts, wet vs. dry cotton pellets, microbrush use and an intentionally over-wet surface. In all groups, the “wettest” dentin intaglio surface resulted in the lowest shear bond strength4.

 

The influence of saliva and blood contamination is clearly negative in situations where the bonding interface was contaminated before or after adhesive application. For saliva, this reduction is due to the deposition of salivary glycoprotein on the surface, and relative to blood, macromolecules such as fibrinogen and platelets block access to the tubules for effective bonding. Blood contamination was found consistently to be more profoundly deleterious on bond strength relative to saliva2.

 

In general, on smear layer-affected dentin, chlorhexidine was consistently superior to other agents such as ethanol, EDTA, aloe vera in establishing the highest shear bond strength to dentin. On dentin that had previously been etched and contaminated with blood and saliva, the agent subsequently applied that showed the highest recovery of shear bond strength was 37.5% phosphoric acid5. A study on the nanomechanical and nanoroughness of etched dentin and self-etching adhesive treated dentin both contaminated with saliva revealed that KATANA™ Cleaner was capable of restoring control values of complex modulus and nanoroughness relative to control6.

 

SYNTHETIC WORKFLOW CONTAMINANTS: DENTAL STONE, HEMOSTATIC AGENTS, ROOT CANAL SEALERS AND PROVISIONAL CEMENTS

A 2020 study by Marfenko et al demonstrated that salivary contamination showed significantly lower bond strengths relative to intaglio contamination by dental stone from laboratory processes. The application of a silane coupling agent to the intaglio surface has a protective effect on the bond strength7. The caveat is that lithium disilicate-based restorations are often requested pre-etched with hydrofluoric acid from the laboratory. Often, the case is returned to the clinician on the secondary or primary model. If already treated with hydrofluoric acid, the surface can now be considered recontaminated with the stone or resin model or simply skin oils from handling. The unprotected surface needs to be decontaminated in any case following the try-in procedure, which now may feature elements of dental stone, blood and saliva, not to mention hemostatic agents such as aluminum chloride and ferric sulphate. If silane coupling agents are applied prior to try-in, the question of whether the intaglio surface was truly contaminant-free after removal from the model.

 

Aluminum chloride is a hemostatic agent that leaves an insoluble precipitate on the surface of the dentin, that is only partially removed when treated with phosphoric acid, resulting only in a partial recovery of shear bond strength relative to control. The application of ethylene diacetyl tetrasodium acetate (EDTA) returned the bond strengths to the level of normal dentin8. The bonding of polycrystalline ceramic restorations and metal alloys is contaminated with saliva upon try-in. This can be removed via steam cleaning and air particle abrasion set at 2.5 bar for 15 seconds9. Phosphoric acid is often mistakenly applied as a cleaning agent to the intaglio surface. In polycrystalline ceramics such as tetragonal zirconia polycrystal, this is disastrous, as phosphates will bond firmly to the free sites that the 10-MDP monomer normally bonds to as part of the APC protocol of zirconia bonding, significantly compromising bond strength (Blatz, 2016)10. A study of modern surface cleaners demonstrated successful debridement of the surface using KATANA™ Cleaner for both blood and saliva-contaminated substrates11, 12.

 

Provisional cements are thought to have a deleterious effect on the shear bond strength of adhesively-bonded indirect ceramic restorations. Ding et al (2022) uncovered that resin-based and non-eugenol cement use in the provisional phase decreased the bond strength relative to control, whilst the use of calcium hydroxide and polycarboxylate cements exhibited acceptable metrics. Debridement of the prepared surface with air particle abrasion (APA) resulted in recovery of decreased bond values to that of control13. Equally useful was the application of Immediate Dentin Sealing (IDS)14, a technique characterized ideally by APA before adhesive bonding and the application of a resin coat, occluding both the dentin tubules as well as the oxygen inhibition layer, allowing the resin-dentin bond to mature and strengthen in the absence of stresses. This approach is effective in minimizing post-operative hypersensitivity and bacterial ingress, as well as optimizing the shear bond strength particularly when indirect ceramics are concerned15. Hardan et al found that the shear bond strength was highest when IDS was completed using a three-step etch and rinse adhesive protocol14.

 

Hemostatic agents used in clinical dentistry exhibit a pH of 1.1 to 3.0 and are as acidic as self-etching primers16. Chaibutyr and Kois found that dentin when contaminated with 25% aluminum chloride or 13% ferric sulphate demonstrated a significantly lower shear bond strength to dentin, which was significantly recovered using the etch-and-rinse approach17. This approach albeit successful was only able to achieve partial reversal of shear bond strength deficits relative to control, with a pre-etching application of EDTA required in order for full recovery8. KATANA™ Cleaner was found to have a positive effect on the cleaning of dentin contaminated with both aluminum chloride and ferric sulphate.

 

The bonding of dentin substrate contaminated with root canal sealers is a concern for the integrity of core buildups post-endodontic treatment. The use of  KATANA™ Cleaner was found to be generally superior to the ethanol test subgroup in the removal of zinc-oxide eugenol-based sealer with equal performance to 70% ethanol for the epoxy resin-based sealer18.

 

 

CLINICAL CASE DEMONSTRATION

A 35 year old ASA 1 female patient presented to the practice with multiple failing composite restorations in the second quadrant that were planned for replacement. Prior to the delivery of topical and local anaesthesia, it is common procedure in the practice to ascertain shade specifics of planned restoratives before potential dehydration can affect the optical properties of the natural tooth. Smart monochromatic composites (Fig. 1) are a class of direct restoratives that leverages the ability of its nanofiller composition and refractive index to mimic the structural color of the surrounding enamel and dentin19. This typically enables a clinician to have a simplified selection of shades on hand.

 

Two carpules of 2% Lignocaine with 1:100,000 epinephrine were delivered via buccal infiltration before absolute isolation was achieved using a non-latex rubber dam (Isodam HD Heavy, 4D Rubber, UK) (Fig. 2). The old restorations were excavated along with caries (Fig. 3), and the dentin structure assessed for residual decay with a detector dye (Caries Detector, Kuraray Noritake Dental Inc.). The preparation cavosurface margins were gently bevelled before surface treatment with air particle abrasion (30psi, 29 micron aluminum oxide in a 17.5% ethanol carrier, Aquacare UK) (Fig. 4). The enamel margins were etched with 33% orthophosphoric acid and rinsed (Fig. 5). The preparation surfaces were decontaminated further of any residual smear or powder residue using a MDP-based surfactant (KATANA™ Cleaner, Kuraray Noritake Dental Inc.) (Fig. 6). A single step self-etching universal adhesive was applied to the preparation as per manufacturer instructions and air thinned before light curing (Fig. 7).

 

Fig. 1

 

Fig. 2

 

Fig. 3

 

Fig. 4

 

Fig. 5

 

Fig. 6

 

Fig. 7

 

A matrix-in-matrix approach was utilized for the second bicuspid as the first step to allow for simultaneous anatomic construction of the mesial and distal marginal ridges. This technique does not require the use of a wedge as the outer circumferential Tofflemire matrix (Omnimatrix, Ultradent Products) tightens cervically around the inner anatomically-curved sectional matrix (Garrison Firm Band, Garrison Dental Solutions) allowing for a hermetic gingival seal (Fig. 8). If required, the setup may be further modified by the use of Teflon inserted between the two matrices to provide better proximofaciolingual adaptation. As a result, finishing and contour creation post-band removal is kept to a minimum. Following this, a traditional sectional matrix system may be employed to close contacts and build marginal ridges in the conventional manner (Fig. 9).

 

Following marginal ridge construction, the matrix assembly was removed and with the Class II lesions converted into a Class I situation, microlayering proceeded with a high flexural strength flowable liner (CLEARFIL MAJESTY™ Flow, Kuraray Noritake Dental Inc.) prior to the application of a monochromatic composite resin (CLEARFIL MAJESTY™ ES-2 Universal U shade, Kuraray Noritake Dental Inc.). The buccal cusps were constructed first as the author considers this essential to establishing restoration lobe proportions (Fig. 10). Subsequent layers were completed in a lobe-by-lobe approach to finish the occlusal anatomy (Fig. 11 and 12). The restoration was checked for occlusal functional conformativity, finished and polished to high shine (Fig. 13).

 

Fig. 8

 

Fig. 9

 

Fig. 10

 

Fig. 11

 

Fig. 12

 

Fig. 13

 

DISCUSSION

Dental substrates are often contaminated in both direct and indirect restorative processes. Historically, etch-and-rinse approaches have been successful for at least the partial recovery of bond strength however it is not practical in situations where selective or self-etching is the adhesive strategy. The restorative dentist in these cases can use the 10-MDP monomer in self-etching systems to target non-demineralized dentin such as CLEARFIL™ Universal Bond Quick to establish an acid base resistance zone (ABRZ) otherwise known as Super Dentin20. The presence of the operative smear layer impedes full access of the self-etching primer to the dentin substrate in some cases. In such cases, without KATANA™ Cleaner, APA is required to transform the substrate back to control bonding potential. APA as a modality is only utilized by a subset of dental practitioners often due to financial constraints or lack of technique experience. KATANA™ Cleaner thus represents a versatile tool for the decontamination and  optimization of substrate surfaces for adhesive bonding both in intraoral and extraoral applications. Its ability to re-establish ideal bonding values in areas that are not effectively reached by APA such as endodontic canal anatomy in a non-invasive manner literally cements it as a truly indispensable tool for the modern restorative dentist.

 

Disclaimer: Some indications are not described in the product’s Instructions for Use and are based on published research and/or the author’s experience. Before using each product, read carefully the Instructions for Use supplied with the product for full details and workflows.

 

Dentist:

CLARENCE TAM

 

References

1. Sugimura R, Tsujimoto A, Hosoya Y, Fischer NG, Barkmeier WW, Takamizawa T, Latta MA, Miyazaki M. Surface moisture influence on etch-and-rinse universal adhesive bonding. Am J Dent. 2019 Feb;32(1):33-38. PMID: 30834729.
2. Taneja S, Kumari M, Bansal S. Effect of saliva and blood contamination on the shear bond strength of fifth-, seventh-, and eighth-generation bonding agents: An in vitro study. J Conserv Dent. 2017 May-Jun;20(3):157-160. doi: 10.4103/0972-0707.218310. PMID: 29279617; PMCID: PMC5706314.
3. Van Meerbeek B, Van Landuyt K, De Munck J, Hashimoto M, Peumans M, Lambrechts P, Yoshida Y, Inoue S, Suzuki K. Technique-sensitivity of contemporary adhesives. Dent Mater J. 2005 Mar;24(1):1-13. doi: 10.4012/dmj.24.1. PMID: 15881200.
4. Pereira GD, Paulillo LA, De Goes MF, Dias CT. How wet should dentin be? Comparison of methods to remove excess water during moist bonding. J Adhes Dent. 2001 Fall;3(3):257-64. PMID: 11803713.
5. Haralur SB, Alharthi SM, Abohasel SA, Alqahtani KM. Effect of Decontamination Treatments on Micro-Shear Bond Strength between Blood-Saliva-Contaminated Post-Etched Dentin Substrate and Composite Resin. Healthcare (Basel). 2019 Nov 1;7(4):128. doi: 10.3390/healthcare7040128. PMID: 31683858; PMCID: PMC6956069.
6. Toledano M, Osorio E, Espigares J, González-Fernández JF, Osorio R. Effects of an MDP-based surface cleaner on dentin structure, morphology and nanomechanical properties. J Dent. 2023 Nov;138:104734. doi: 10.1016/ j.jdent.2023.104734. Epub 2023 Oct 2. PMID: 37793561.
7. Marfenko S, Özcan M, Attin T, Tauböck TT. Treatment of surface contamination of lithium disilicate ceramic before adhesive luting. Am J Dent. 2020 Feb;33(1):33-38. PMID: 32056413.
8. Ajami AA, Kahnamoii MA, Kimyai S, Oskoee SS, Pournaghi-Azar F, Bahari M, Firouzmandi M. Effect of three different contamination removal methods on bond strength of a self-etching adhesive to dentin contaminated with an aluminum chloride hemostatic agent. J Contemp Dent Pract. 2013 Jan 1;14(1):26-33. doi: 10.5005/jp-journals-10024-1264. PMID: 23579888.
9. Yang B, Lange-Jansen HC, Scharnberg M, Wolfart S, Ludwig K, Adelung R, Kern M. Influence of saliva contamination on zirconia ceramic bonding. Dent Mater. 2008 Apr;24(4):508-13. doi: 10.1016/j.dental.2007.04.013. Epub 2007 Aug 6. PMID: 17675146.
10. Blatz MB, Alvarez M, Sawyer K, Brindis M. How to Bond Zirconia: The APC Concept. Compend Contin Educ Dent. 2016 Oct;37(9):611-617; quiz 618. PMID: 27700128. (7)
11. Awad MM, Alhalabi F, Alzahrani KM, Almutiri M, Alqanawi F, Albdiri L, Alshehri A, Alrahlah A, Ahmed MH. 10-Methacryloyloxydecyl Dihydrogen Phosphate (10-MDP)-Containing Cleaner Improves Bond Strength to Contaminated Monolithic Zirconia: An In-Vitro Study. Materials (Basel). 2022 Jan 28;15(3):1023. doi: 10.3390/ma15031023. PMID: 35160968; PMCID: PMC8838745.
12. Tian F, Londono J, Villalobos V, Pan Y, Ho HX, Eshera R, Sidow SJ, Bergeron BE, Wang X, Tay FR. Effectiveness of different cleaning measures on the bonding of resin cement to saliva-contaminated or blood-contaminated zirconia. J Dent. 2022 May;120:104084. doi: 10.1016/j.jdent.2022.104084. Epub 2022 Mar 3. PMID: 35248674.
13. Ding J, Jin Y, Feng S, Chen H, Hou Y, Zhu S. Effect of temporary cements and their removal methods on the bond strength of indirect restoration: a systematic review and meta-analysis. Clin Oral Investig. 2023 Jan;27(1):1530. doi: 10.1007/s00784-022-04790-6. Epub 2022 Nov 24. PMID: 36422719; PMCID: PMC9877054.
14. Hardan L, Devoto W, Bourgi R, Cuevas-Suárez CE, Lukomska-Szymanska M, Fernández-Barrera MÁ, Cornejo Ríos E, Monteiro P, Zarow M, Jakubowicz N, Mancino D, Haikel Y, Kharouf N. Immediate Dentin Sealing for Adhesive Cementation of Indirect Restorations: A Systematic Review and Meta-Analysis. Gels. 2022 Mar 11;8(3):175. doi: 10.3390/gels8030175. PMID: 35323288; PMCID: PMC8955250.
15. Samartzi TK, Papalexopoulos D, Sarafianou A, Kourtis S. Immediate Dentin Sealing: A Literature Review. Clin Cosmet Investig Dent. 2021 Jun 21;13:233-256. doi: 10.2147/CCIDE.S307939. PMID: 34188553; PMCID: PMC8232880.
16. Woody RD, Miller A, Staffanou RS. Review of the pH of hemostatic agents used in tissue displacement. J Prosthet Dent. 1993 Aug;70(2):191-2. doi: 10.1016/0022-3913(93)90018-j. PMID: 8371184.
17. Chaiyabutr Y, Kois JC. The effect of tooth-preparation cleansing protocol on the bond strength of self-adhesive resin cement to dentin contaminated with a hemostatic agent. Oper Dent. 2011 Jan-Feb;36(1):18-26. doi: 10.2341/09-308-LR1. Epub 2011 Feb 21. PMID: 21488725.
18. Tian F, Jett K, Flaugher R, Arora S, Bergeron B, Shen Y, Tay F. Effects of dentine surface cleaning on bonding of a self-etch adhesive to root canal sealer-contaminated dentine. J Dent. 2021 Sep;112:103766. doi: 10.1016/j.jdent.2021.103766. Epub 2021 Aug 5. PMID: 34363888.
19. Ahmed MA, Jouhar R, Khurshid Z. Smart Monochromatic Composite: A Literature Review. Int J Dent. 2022 Nov 8;2022:2445394. doi: 10.1155/2022/2445394. PMID: 36398065; PMCID: PMC9666026.
20. Nikaido T, Weerasinghe DD, Waidyasekera K, Inoue G, Foxton RM, Tagami J. Assessment of the nanostructure of acid-base resistant zone by the application of all-in-one adhesive systems: Super dentin formation. Biomed Mater Eng. 2009;19(2-3):163-71. doi: 10.3233/BME-2009-0576. PMID: 19581710.

 

Abonneer u op onze nieuwsbrief
Sluit u aan bij duizenden tandheelkundige professionals en ontvang gratis advies dat u en uw carrière kan helpen. We zullen uw e-mailadres niet spammen of delen.