Clinical Cases, Chairside Universal adhesives: rationalizing clinical procedures Oct 24, 2023 Case report with Dr. José Ignacio Zorzin Rationalizing clinical workflows: This is the main reason for the use of universal products in adhesive dentistry. They are suitable for a wide range of indications and different application techniques, fulfil their tasks with fewer components than conventional systems and often involve fewer steps in the clinical procedure. Universal adhesives are a prominent example. How do universal adhesives contribute to a streamlining of workflows? When restoring teeth with resin composite, the restorative material will undergo volumetric shrinkage upon curing. By bonding the restorative to the tooth structure with an adhesive, the negative consequences of this shrinkage – marginal gap formation, marginal leakage and staining, hypersensitivity issues and the development of secondary caries – are prevented. The first bonding systems available on the dental market were etch-and-rinse adhesives, which typically consisted of three components: an acid etchant, a primer and a separate adhesive. Later generations combined the primer and the adhesive in one bottle, or were two or one-bottle self-etch adhesives. Universal adhesives (also referred to as multi-mode adhesives) may be used with or without a separate phosphoric acid etchant. Fig. 1. Volumetric shrinkage of resin composite restoratives and its clinical consequences. Which technique to choose depends on the indication and the clinical situation. In most cases, the best outcomes are obtained after selective etching of the enamel1. Bonding to enamel is generally found more effective when the enamel is etched with phosphoric acid, while the application of phosphoric acid on large areas of dentin involves the risk of etching deeper than the adhesive is able to hybridize. When the cavity is small, however, selective application of the phosphoric acid etchant to the enamel surface may not be possible, so that a total-etch approach is most appropriate. Finally, in the context of repair, the self-etch approach may be the first choice, as phosphoric acid might impair the bond strength of certain restorative materials by blocking the binding sites. By using a universal adhesive, all these cases may be treated appropriately, as the best suitable etching technique can be selected in every situation. Apart from the differences related to the use or non-use of phosphoric acid etchant on the enamel or enamel-and-dentin bonding surface, the clinical procedure is always similar with the same universal adhesive. The following clinical case is used to illustrate how to proceed with CLEARFIL™ Universal Bond Quick (Kuraray Noritake Dental Inc.) in the selective enamel etch mode, and it includes some details about the underlying mechanism of adhesion. How to proceed with selective enamel etching? A clinical example. This patient presented with a fractured maxillary lateral incisor, luckily bringing the fragment with him. Hence, it was decided to adhesively lute the fragment to the tooth with an aesthetic flowable resin composite. Fig. 2. Patient with a fractured maxillary lateral incisor. Fig. 3. Close-up of the fractured tooth. Fig. 4. Working field isolated with rubber dam. As proper isolation of the working field makes the dental practitioner’s life easier, a rubber dam was placed using the split-dam technique. It works well in the anterior region of the maxilla, as the risk of contamination with saliva from the palate is minimal. Once the rubber dam was placed, the bonding surfaces needed to be slightly roughened to refresh the dentin. As the surfaces were also slightly contaminated with blood and it is important to have a completely clean surface for bonding, KATANA™ Cleaner was subsequently applied to the tooth structure, rubbed into the surfaces for ten seconds and then rinsed off. The cleaning agent contains MDP salt with surface-active characteristics that remove all the organic substances from the substrate. The fragment was fixed on a ball-shaped plugger with (polymerised) composite and also cleaned with KATANA™ Cleaner. Fig. 5. Cleaning of the tooth … Fig. 6. … and the fragment with KATANA™ Cleaner. What followed was selective etching of the enamel on the tooth and the fragment for 15 seconds. Whenever selective enamel etching is the aim, it is essential to select an etchant with a stable (non runny) consistency – a property that is offered by K-ETCHANT Syringe (Kuraray Noritake Dental Inc.). Both surfaces were thoroughly rinsed and lightly dried before applying CLEARFIL™ Universal Bond Quick with a rubbing motion. This adhesive is really quick: Study results show that the bond established immediately after application is as strong and durable as after extensive rubbing into the tooth structure for 20 seconds.2,3 The adhesive layer was carefully air-dried to a very thin layer and finally polymerized on the tooth and on the fragment. Fig. 7. Selective etching of the enamel of the tooth … Fig. 8. … and the fragment with phosphoric acid etchant. Fig. 9. Application … Fig. 10. … of the universal bonding agent. Fig. 11. Polymerization of the ultra-thin adhesive layer on the tooth … Fig. 12. … and the fragment. What happens to dentin in the selective enamel etch (or self-etch) mode? After surface preparation or roughening, there is a smear layer on the dentin surface that occludes the dentinal tubules, forms smear plugs that protect the pulp and prevents liquor from affecting the bond. When self-etching the dentin with a universal adhesive, this smear layer is infiltrated and partially dissolved by the mild self-etch formulation (pH > 2) of the universal adhesive. At the same time, the adhesive infiltrates and demineralizes the peritubular dentin. The acid attacks the hydroxyapatite at the collagen fibrils, dissolves calcium and phosphate and hence enlarges the surface. Then, the 10-MDP contained in the formulation reacts with the positively loaded calcium (and phosphate) ions. This ionic interaction is responsible for linking the dentin with the methacrylate and thus for the formation of the hybrid layer.4,5 In the total-etch mode, the phosphoric acid is responsible for dissolving the smear layer and demineralising the hydroxyapatite. This leads to a collapsing of the collagen fibrils, which need to be rehydrated by the universal adhesive that is applied in the next step. Whenever the acid penetrates deeper into the structures than the adhesive, the collagen fibrils will remain collapsed. This will most likely result in clinical issues including post-operative sensitivity6. When applying the adhesive system, a dental practitioner rarely thinks about what is happening at the interface7. However, every user of a universal adhesive should be aware of the fact that a lot is happening there. This is why it is so important to use a high-performance material with well-balanced properties and strictly adhere to the recommended protocols. Fig. 13. Schematic representation of dentin after tooth preparation: The smear layer on top with its smear plugs occluding the dentinal tubules protects the pulp and prevents liquor from being released into the cavity. Fig. 14. Schematic representation of dentin after the application of a universal adhesive containing 10-MDP: The mild self-etch formulation partially dissolves and infiltrates the smear layer, while at the same time demineralizing and infiltrating the peritubular dentin5. In the present case, the tooth and the fragment now needed to be reconnected. For this purpose, CLEARFIL MAJESTY™ ES-Flow (A2 Low) was applied to the tooth structure. The fragment was then repositioned with a silicone index, held in the right position with a plier and light cured. To obtain a smooth margin and glossy surface, the restoration was merely polished. The patient presented after 1.5 years for a recall and the restoration was still in a perfect condition. Fig. 15. Reconnecting the fragment with the tooth structure. Fig. 16. Treatment outcome. Why is it important to adhere to the product-specific protocols? Universal adhesives contain lots of different technologies in a single bottle. While this fact indeed allows users to rationalize their clinical procedures, it also requires some special attention. As every highly developed material, universal adhesives need to be used according to the protocols recommended by the manufacturer. In general, materials may only be expected to work well on absolutely clean surfaces, while contamination with blood and saliva is likely to decrease the bond strength significantly. Depending on the type of universal adhesive, active application is similarly important, as is proper air-drying and polymerization of the adhesive layer. In addition, care must be taken to use the material in its original state, which means that it needs to be applied directly from the bottle to avoid premature solvent evaporation or chemical reactions. When adhering to these rules, universal adhesives offer several benefits from streamlined procedures to simplified order management and increased sustainability, as fewer bottles are needed and likely to expire before use. Dentist: DR. JOSÉ IGNACIO ZORZIN Dr. José Ignacio Zorzin graduated as dentist at the Friedrich-Alexander University of Erlangen-Nürnberg, Germany, in 2009. He obtained his Doctorate (Dr. med. dent.) in 2011 and 2019 his Habilitation and venia legendi in conservative dentistry, periodontology and pediatric dentistry (“Materials and Techniques in Modern Restorative Dentistry”). Dr. Zorzin works since 2009 at the Dental Clinic 1 for Operative Dentistry and Periodontology, University Hospital Erlangen. He lectures at the Friedrich-Alexander University of Erlangen-Nürnberg in the field of operative dentistry where he leads clinical and pre-clinical courses. His main fields of research are self-adhesive resin luting composites, dentin adhesives, resin composites and ceramics, publishing in international peer-reviewed journals. References 1. Van Meerbeek, B.; Yoshihara, K.; Van Landuyt, K.; Yoshida, Y.; Peumans, M. From Buonocore‘s Pioneering Acid-Etch Technique to Self-Adhering Restoratives. A Status Perspective of Rapidly Advancing Dental Adhesive Technology. J Adhes Dent 2020, 22, 7-34.2. Kuno Y, Hosaka K, Nakajima M, Ikeda M, Klein Junior CA, Foxton RM, Tagami J. Incorporation of a hydrophilic amide monomer into a one-step self-etch adhesive to increase dentin bond strength: Effect of application time. Dent Mater J. 2019 Dec 1;38(6):892-899.3. Nagura Y, Tsujimoto A, Fischer NG, Baruth AG, Barkmeier WW, Takamizawa T, Latta MA, Miyazaki M. Effect of Reduced Universal Adhesive Application Time on Enamel Bond Fatigue and Surface Morphology. Oper Dent. 2019 Jan/Feb;44(1):42-53.4. Fehrenbach, J., C.P. Isolan, and E.A. Münchow, Is the presence of 10-MDP associated to higher bonding performance for self-etching adhesive systems? A meta-analysis of in vitro studies. Dental Materials, 2021. 37(10): 1463-1485.5. Van Meerbeek, B., et al., State of the art of self-etch adhesives. Dental Materials, 2011. 27(1): 17-28.6. Pashley, D.H., et al., State of the art etchand-rinse adhesives. Dent Mater, 2011. 27(1): 1-16.7. Vermelho, P.M., et al., Adhesion of multimode adhesives to enamel and dentin after one year of water storage. Clinical Oral Investigations, 21(5): 1707-1715.
Clinical Cases, Labside Copying nature with high performance materials Oct 17, 2023 Clinical Case by DT Ghaith Alousi What does it take to reconstruct teeth according to the patient’s individual sense of beauty? Experience shows that copying nature is the secret of success. To become a good duplicator, it is essential to develop an eye for detail with regard to tooth forms, surface morphology and the internal colour structure of the teeth to be copied. In addition, the duplicator needs to develop an understanding of the materials and tools used to copy those details. The last key success factor is taking pleasure in interacting with patients. Read the clinical case created by Ghaith Alousi and published in the LabLine magazine’s Autumn edition now and learn about his approach to creating aesthetic restorations, mimicking nature and truly individualising restorative treatments.
News Feature Achieving maximum quality in a minimum amount of time Oct 10, 2023 Interview with Andreas Chatzimpatzakis Fewer bakes, fewer ceramic powders - there is clearly a trend toward simplification in the production of zirconia-based prosthetic work. This is also true for implant-based restorations, which often involve gum parts. DT Andreas Chatzimpatzakis, international trainer for Kuraray Noritake Dental Inc., and the owner of ACH Dental Laboratory in Athens, Greece, shares his approach to high aesthetics in implant prosthodontics in the following conversation. You are a user of the CERABIEN™ ZR portfolio from the outset. When did you test the products for the first time and why? Well, it was many years ago when I finished my very first zirconia-based restoration. The reason to test CERABIEN™ ZR was that when I asked the dental technician who had milled the framework which porcelain system to use. He suggested to use CERABIEN™ ZR, which I did. I was immediately impressed by the system and by the outcome I was able to achieve on the first attempt. Did you ever test any other porcelain systems for ceramic layering? Yes. Before I becoming an international trainer for Kuraray Noritake Dental Inc., I had the opportunity to test many other porcelain systems for layering on zirconia. Based on this experience, I can say that CERABIEN™ ZR is unique and the best system I have ever used. The reason is that its translucency and chroma are extremely close to natural teeth. In addition, due to a controlled firing shrinkage, a One-Bake Technique may be employed even in long-span restorations. Your hands-on demonstration at the Kuraray Noritake Dental booth during the IDS 2023 in Cologne focused on White and Pink Aesthetics achieved with CERABIEN™ ZR. Is there a specific concept you use? Nowadays, everyone producing dental restorations – no matter whether based on natural teeth or on implants – is confronted with increasing aesthetic demands of patients and dental practitioners. The high demands are developed because life-like restorations and cosmetic dental treatment outcomes are presented everywhere in the web and on social media. The showcased quality of outcomes is simply expected, even if the financial budget is limited. To be able to fulfil these demands in the field of implant-based prosthodontics, I have developed an approach that allows me to achieve high aesthetics with little effort. My concept is based on using not too many ceramic powders. For extra chroma and special characterization, I rely on the power of the internal live stain technique, first introduced by Hitoshi Aoshima-sensei. Please summarize the most important details of your presentation. The first important detail is the design and characterization of the framework. Before sintering, I apply Esthetic Colorant for KATANA™ Zirconia. After the sintering process, shade base stain and internal stains are mixed and applied. In this way, I create a nice canvas that helps me to achieve a life-like result with only a few selected ceramic powders. In most cases, three to five powders are enough to produce a great result. Among the powders used most frequently are Opacious Body, Body, LTX, Mamelon and CCV. After the first bake and a little grinding, I make use of internal stains again. They offer support in the controlling of the chroma and the integration of special characteristics. When this step is completed, the final build-up is done with one or two ceramic powders, most of the times LT1 and Enamel or LT0. Pink aesthetics are usually created with Tissue 1, 3 and 5. For the free gingiva, LT Coral is my go-to solution. The major goal is always to obtain maximum quality in a minimum of time. To achieve this, a good knowledge of the materials and of course practicing – on both, porcelain build-up and morphology – are strictly required. Fig. 1. Complex implant-based restoration: Framework design. Fig. 2. Esthetic Colorant … Fig. 3. … applied prior to the final sintering procedure. Fig. 4. Appearance after sintering. Fig. 5. Final outcome. Are there any concrete tips and tricks you would like to share? For the characterization of the framework, I mix the internal stains with shade base stain powders; mostly with SS Fluoro. For the first bake, especially when the restoration is large and the amount of ceramic to be applied huge, I reduce the heating rate up to 38 degrees per minute. I also increase the drying process up to 17 or even 20 minutes depending to the restoration. Experience shows that these measures optimize the aesthetic outcomes. You often mention that it is extraordinarily important to understand the morphology of natural teeth to be able to produce beautiful restorations. Why is this the case? A successful prosthetic restoration needs to offer proper function and aesthetics. Function means a precise fit, perfect contact points and occlusion, a proper emergence profile and interproximal embrasures for self-cleaning etc. All this is described by the term morphology. Aesthetics, on the other hand, is guided by shape and colour. The effort required to establish a proper morphology is much higher (about 70 percent of the total work) than the effort involved in obtaining the right translucency, opalescence and chroma. What instruments do you use to imitate the morphology of natural teeth and how do you do it? I usually make use of the Optimum™ Spring Ceramic Brush Size 8 (MPF Brush Co.), stones and diamond burs for detailed grinding and carving after the final bake. I studied morphology at the Osaka Ceramic Training Centre in Japan with Shigeo Kataoka-sensei. According to him, a key factor in creating a perfect macro and micro morphology lies in the shadows. To be able to take into account the interference of light and shadow during grinding, a light source is placed on one side of the restoration. How many bakes do you need to produce highly aesthetic restorations? It depends on the case, although in many situations, I nowadays opt for some kind of micro-layering. Lately, I have used micro-layering a lot with internal stain directly on the zirconia framework. In other cases, I do a quick first bake, then the internal staining, a final bake and glazing. For small or single-unit restorations in the posterior region, a One-Bake Technique is often sufficient. Even a Zero-Bake approach using Esthetic Colorant on a monolithic zirconia restoration may be appropriate here, and it is very convenient. If there is a restoration with high aesthetic demands – these are typically single anterior restorations – the technique I select depends on the shade. In some cases, using only the internal stain technique is enough to reach a high aesthetic level, while in other cases, additional steps need to be taken. To my mind, there is no single technique that fits all cases. As mentioned before, I try to achieve high aesthetics in a minimum of time. Fig. 6. Clinical example of achieving high aesthetics in a minimum of time: Before … Fig. 7. … and after crown placement. Fig. 8. High aesthetics … Fig. 9. … achieved in a minimum of time. Did your approach change due to the availability of high-translucency zirconia materials with colour (and flexural strength) gradation? Well, yes! My overall approach changed more to micro-layering. Several years ago, we needed to consider how to mask the framework and how to achieve translucency in areas with limited space. The problem was solved for single-unit and small anterior bridge restorations with the availability of KATANA™ Zirconia UTML and STML. With the introduction of KATANA™ Zirconia YML, a high-translucency material became available for long-span or implant-based restorations as well. We have strength and translucency all in one disc. In most of my cases, the framework material replaces the dentin with regard to morphology and shade. Hence, I need to focus on adding the enamel by applying the transparent and translucent powders. The powders of the internal stain technique are used to characterize the framework, and with a micro-layer of porcelain, the goal of creating an aesthetic restoration in the minimum of time is achieved. This is exactly why I am sure that micro-layering is the future. What drives you to share your knowledge with others? My passion! I love my work! And I love to see technicians become better and better. Dental technology is an exciting journey, a journey that begins when the first impression arrives in the dental laboratory, and it ends when the final restoration is cemented into the patient’s mouth. And this journey is so exciting because we change lives. We change people’s personalities, we give them back their smile, we give them back their self-respect. Consider that every day, every single moment working on our bench trying to imitate nature… there is nothing more exciting than that!!! My approach as an instructor is to lead dental technicians to master the art of observing natural teeth. This is the way every individual will understand morphology and shade. You need no special talent to be a very good dental technician. You need to observe! Your eyes see, your mind understands, and your hands will follow.
News Feature Interview with Alexander Aronin Oct 3, 2023 Alexander (Alek) Aronin is a master dental technician who dedicated himself to the creation of high-end, handmade porcelain restorations. He runs a dental laboratory and morphology school in Spain, and travels the world as a lecturer and teacher. The greatest source of inspiration in his professional life is the book Collection of Ceramic Works by Hitoshi Aoshima. Through reading it in 1996, he discovered superb outcomes of working with dental ceramics. Moreover, the book’s content made him realize that the creation of handmade porcelain work is a result of special education and manual skills. Those who want to become masters need a lot of commitment and a striving for continuous improvement, which Alek shows in his work and his classes. We talked to him about his philosophy and his enthusiasm for the creation of lifelike restorations. He shared with us his perspective on the future of dental technology and gave some practical tips on how to achieve a high level of professional satisfaction. Photo courtesy of Dennis Debiase Alek, many dental technicians decide to focus on CAD/CAM technology and automated processing of dental ceramics. Due to improvements on the material side, a handmade porcelain layer is no longer necessary in many clinical cases. In this context, the manual refinement process is reduced to a minimum. Why did you decide to take a completely different path and focus on fully manual dental craftsmanship? The shift towards automated processing is not a matter of choice for dental technicians rather, it is a natural response to the evolution of technology. The high-end manual refinement process remains unchanged. The human element, from communication to hand crafting among skilled individuals and demanding clients, has been a constant so far throughout history. This traditional connection remains stable for centuries. Digitalisation is not the revolution in the dental industry, and I do not see the benefit of it in our narrow specialization yet. In the area we are working, we do all steps of our case faster, incomparably more precise and more profitable. But we are keeping eye on machines and waiting for a suitable one. Machines and automated processes widely serve mass production businesses focused on fast, affordable and uniform results in a highly competitive field. Our goal and workflow are different - we provide individual work and personal attention to each of our partners and patients. So, we do not compete with the production labs and do not interrupt each other, we coexist in parallel worlds as always. A small number of dentists and their patients will always demand personal attention and valued restorations and service of the highest quality. Many dental technicians admire your work. Yet, you continue to strive for improvement. Why is this the case? On one side, we are limited by static ceramic material used to mimic dynamic natural teeth that keep changing for a lifetime. On the other side, we are limited by our manual skills. I am still far away from my teachers and Japanese colleagues. My target is to improve the fabrication process. My goal is to achieve the simplicity and imperfectness like Aoshima-sensei. Alek lecturing at the IDS 2023 in Cologne.Photo courtesy of Dennis Debiase We are enjoying the outcome, but prefer to focusing on the improvement of the process, and move on to create a better one. This is what I am learning in Japan, and this is what I teach my students. Talking about learning: What are the most important aspects a dental technician who wants to improve his skills should have in mind when looking for a good teacher? Manual skills are very important, but not the only aspect that should be taken into account. Every individual should be motivated and guided and this is a teacher’s job. I love the traditional Japanese way of teaching and learning: The teachers are passionate, leading the way by evoking emotions and manual skills to bring the best out of every single student. My personal advice for dental technicians who want to become masters in the creation of lifelike high-end dental restorations is to select their teachers carefully and go to a private school or courses whenever they have the chance. What are the most important tools a dental technician needs to use when trying to create high-end lifelike restorations? I suggest to focus on four aspects: Documentary dental photography - required for documentation and communication with the dental office and patients using constant (once set and never changed) parameters of the photo equipment. Focus to the biomimetic additive dentistry. This is a minimum machine invasive field. Dental technicians and dentists should be able to develop a deep knowledge about clinical and lab-side procedures to be able communicate with each other. Mastering morphology and function (shape carving), and anatomy (internal staining), which comes with value control and mimicking fine tooth details for best integration in the mouth. Written communication (stop phone calls) is very important, this is the way how to exchange the information between the patient, clinic and lab by strict protocols. I teach these complex skills in my morphology school and in many of my trainings worldwide. Focusing on the four aspects, a dental technician has a great chance to become a good specialist in a relatively short period of time in a narrow field. Is material selection important for achieving great results? I’ve been using Noritake ceramic for most of my life, and the reason is simple: Noritake created their EX-3 porcelain over 40 years ago, and it was so well-made that it has not needed any changes since. This is showing their consistently high quality and creates unbroken succession in the valuable tradition of passing on techniques and knowledge. Today, among different generations of dental technicians, we can use and share the same methods, vocabulary and abbreviations, powders, and temperature charts developed by our skilled teachers 30 to 40 years ago. This unique feature sets Noritake and Creation porcelains apart from all other brands and systems in the world. The other Noritake porcelain I use quite frequently is CERABIEN™ ZR, which is also well-tried and tested and has even some more advantages than EX3. Is there any final advice you would like to give? To become a good professional, I suggest to developing in four parallel directions: Practicing on phantoms - fabricating cases and ceramic samples. It helps to experiment and practice with varied materials and techniques. Implementing the achieved techniques in clinical cases. Working with case presentation PowerPoint or Keynote: documenting the working steps in pictures and videos from beginning to end. Mastering the communication using e-mails. Constantly calibrate and adjust the information exchange process between the clinic and lab. Acquire deeper knowledge about the work of each other. Good luck!
News Feature Zero-bake technique: a simplified approach to zirconia aesthetics Sep 26, 2023 Interview with DT Giuliano Moustakis The percentage of restorations made of zirconia in a full-contour (monolithic) design is steadily increasing. As an enabler of this development, companies like Kuraray Noritake Dental Inc. have introduced high-performance zirconia materials with well-balanced optical and mechanical properties along with innovative finishing solutions. A popular example is KATANA™ Zirconia YML with its multi-layered flexural strength, translucency and colour structure. Combined with Esthetic Colorant for KATANA™ Zirconia and CERABIEN™ ZR FC Paste Stain, it is very well suited for a simplified approach to zirconia aesthetics: The Zero-Bake Technique. We had a conversation with DT Giuliano Moustakis about its benefits and areas of application. Giuliano Moustakis, why is there a need for a new technique related to the finishing of monolithic zirconia restorations? Like many manufacturers of restorative materials, I truly believe that the trend towards monolithic zirconia restorations is here to stay. The reason is that there is a huge number of patients who place great value on high-quality dental treatments, but have a limited budget. Many of them are interested in metal-free restorations that blend in nicely with the surrounding dentition and are able to withstand the test of time. Reasonable cost is more important to them than highest-end aesthetics. The new materials available on the market allow us to produce restorations with the desired properties, but we need to think about how to combine them in the most effective way to be able to respond to all those demands including the financial one. Please describe the Zero-Bake Technique. This technique is based on a monolithic restoration design carried out in the preferred design software. In this step, it is already important to focus on a natural surface morphology – about 80 percent of the morphology are realized in the digital manufacturing procedure. After milling, some morphological details (the last 20 percent) are added with hand instruments. My personal set of instruments consists of two kinds of diamond discs used for the interproximal area of bridges (with virtually no pressure), a round-end straight carbide bur (fine), Panther stones and a zirconia-blade carving instrument. However, any set of instruments that feels comfortable in the hands of its user may be selected for this task. Taking into account the volumetric shrinkage during sintering and the final polishing and glazing, the structure created is ideally slightly over-contoured and clearly defined. It is definitely worth investing time in this preparatory step, as it will make our lives much easier later in the process. After surface texturing, selected colours of Esthetic Colorant for KATANA™ Zirconia – specific dyeing liquids designed for the imitation of natural optical effects – are applied to the surface. Fig. 1. Working out the details in the interproximal area with rotating disc-shaped instruments. Fig. 2. Integration of the micro morphology with a round-end straight carbide bur. Do you have any recommendations on how to proceed with this set of liquids? Just follow the colour reproduction of the adjacent natural teeth. With Esthetic Colorant, we want to create beautiful illusions, and nature is our best source of inspiration. To be able to copy what we see, however, we need to understand the properties and behaviour of the materials we use. Consequently, I strongly recommend to test them extensively. For example, you may train on remnants of zirconia blanks before moving on to real patient cases. The duration of the testing period should depend on the outcomes produced, which should be highly predictable at the moment the first patient case is started. I experimented and practiced with Esthetic Colorant for about six months, and did use it on the first real case after one moth of practicing. Nowadays, there are five effect liquids which I use on a daily basis in almost every case: A Plus: Used mainly in the vestibular cervical and palatal cervical and mamelon areas to increase the chroma of A dentin shades Blue: Used to reproduced the blueish enamel colour found in the area of the incisal edge and occlusal cusps Gray: Used (often in addition to Blue) to reproduce the grayish enamel colour found on the incisal edge and cusps Orange: Used to give an orange appearance to the cervical area and to intensify the contours of the mamelons Brown: Used to reproduce the dentin colour in the cervical area and to darken the colour in the main groove In addition, there is a liquid with a special function I value highly: Opaque. This modifier liquid is applied on the intaglio of a restoration to mask discoloured or metal abutments. In order to intensify the effects of this and other liquids, they may be applied to a single spot up to three times. Fig. 3. Basic chromatic map for Individualization in the anterior region. Fig. 4. Restoration after sintering. Fig. 5. Frontal view of a complex restoration including gum parts with information on where to apply which type of Esthetic Colorant. Fig. 6. Basal view of the restoration with Opaque applied to mask the screws, and Violet and Pink to add colour to the gums. Fig. 7. Occlusal view with colour recommendations. How do you apply Esthetic Colorant and what are the steps that follow once you have applied them? For application, I use the dedicated Liquid Brush Pen for Esthetic Colorant. They allow for a controlled application of the desired amount of liquid and thus support predictable outcomes. Once all Esthetic Colorant liquids are applied, it is essential to dry the zirconia at a temperature between 80 and 200° C for a minimum of 30 minutes. During application of the liquids and drying, any contact with metal must be prevented. Therefore, the brushes used during application must be metal-free, and the same holds true for the tray. By adhering to this rule, discolouration is effectively prevented. The subsequently selected sintering protocols are not affected by the effect liquids – and the same for all types of zirconia from the KATANA™ Zirconia Multi-Layered series. Once sintered and cooled down, the surface of the restorations is finished with a set of polishing instruments. My tip in this context is to be careful not to destroy the micro morphology created in the pre-sintering step. To add the final gloss and natural fluorescence, the surface is treated by sandblasting for the application of CERABIEN™ ZR FC Paste Stain, fixed in a single glaze firing procedure. Does the technique also work without glazing? Yes, it is definitely possible to do without this step. In this case, however, the restoration will not offer a fluorescent effect. Whenever a restoration is finished without glazing, the surface must be perfectly polished. If completely smooth, the hardness of the material will not cause any harm to the opposing dentition. What are the main indications for the Zero Bake Technique? Personally, I use it most often in the context of complex reconstructions and in the posterior region, especially when the available space is limited. It allows for minimal wall thicknesses and the surface is – when well-polished – more antagonist-friendly than a lithium disilicate surface. In other cases, and depending on the financial budget, digitally produced dentin-core crowns are a great option. The dentin core is milled from KATANA™ Zirconia YML, the enamel added using CERABIEN™ ZR Luster Porcelains. Esthetic Colorant, internal stans and CERABIEN™ ZR FC Paste Stain may be added for individual effects. Compared to traditional full porcelain layering, this concept is quicker, involves a lower shrinkage, offers a high stability due to the specific framework design and requires a thinner wall thickness (e.g. 0.6 mm strength of the dentin core plus 0.6 mm porcelain). Fig. 8. Example of a dentin-core restoration. The surface morphology is refined with a Panther stone. Why is it important to develop new design and finishing concepts nowadays? To my mind, a lack of time is the greatest issue of modern dental technology. Due to a lack of skilled personnel and an expected decrease in the number of dental laboratories in many countries around the globe, we have to keep looking for concepts that help us reduce the time pressure and make our lives easier. While simplifying procedures, however, we need to provide for the same or even a higher quality of the outcomes. This is exactly what I wanted to achieve when starting to develop the Zero-Bake Technique. My personal gain is more free time. Why do you share your ideas with others by working as an instructor and lecturer? I simply enjoy interacting with colleagues, equipping them with knowledge and letting them benefit from good ideas. Dentist: DT GIULIANO MOUSTAKIS Giuliano Moustakis has more than 30 years of expertise as dental technician. He was born in Greece but currently resides in Germany, where he has a lab in Falkensee. Giuliano studied at the School of Dental Technology (SBIE) in Athens, Greece. Over the years he completed several other studies in Germany and Japan, including: the maxillofacial prosthetic technician (IASPE), advanced education in functional diagnosis of the temporomandibular joint, Curriculum implant prosthetics for dental technicians (DGZI). He has been a global instructor at Kuraray Noritake Dental Inc. since 2019. Last but not least it is important to note that he is also a gifted and enthusiastic photographer.
News Feature PANAVIA™: 40 years of success in adhesive luting Sep 19, 2023 DID YOU EVER WONDER WHY THE PRODUCTS OF THE PANAVIA™ BRAND OFFER SUCH OUTSTANDING PERFORMANCE? You probably know that they all contain the original MDP monomer developed in the early 1980s. It has attracted much attention because it is such an excellent adhesive monomer. This phosphate ester monomer forms a very strong bond to tooth structure, zirconia, and dental metals. It has been used in every PANAVIA™ product. In reality, however, other catalytic technologies and ingredients alongside MDP are important technological contributors supporting the performance of our cementation solutions. INGREDIENTS AFFECTING THE POLYMERISATION REACTION One of these decisive additional technologies and ingredients is the polymerization catalyst triggering the curing process. Different from the MDP monomer used in every PANAVIA™ product, the polymerization catalyst has been continuously improved since the introduction of PANAVIA™ EX in 1983. New versions have been developed for PANAVIA™ 21, PANAVIA™ Fluoro Cement and PANAVIA™ V5, for example. Another important component also affecting the curing process is the Touch Cure Technology used in two of the three major products of the current PANAVIA™ Portfolio: PANAVIA™ V5 and PANAVIA™ Veneer LC. This technology was first used in PANAVIA™ 21, which was launched in 1993. The contact of the chemical polymerization activator contained in the self-etching primer with the resin cement paste accelerates the polymerization of the cement from the adhesive interface, thus providing better adhesion of the resin cement. In developing PANAVIA™ V5, we reviewed the chemical composition of the existing PANAVIA™ products and updated it substantially. The Touch Cure technology has also been adopted for use in the case of PANAVIA™ V5 Tooth Primer and the concomitantly used PANAVIA™ V5 Paste. When cementing veneers with PANAVIA™ Veneer LC, we also use PANAVIA™ V5 Tooth Primer for conditioning teeth. This also involves the application of Touch Cure technology for achieving an adhesive connection with the tooth without compromising the working time of the cement paste. ADDITIONAL ADHESIVE MONOMERS Even in the field of adhesive monomers, we did not stand still: We developed the LCSi monomer, a long carbon chain silane-coupling agent which made possible to integrate the function of a ceramic primer in our universal self-adhesive resin cement PANAVIA™ SA Cement Universal. With its high level of hydrophobicity, this monomer provides stable, long-term bond strength. Generally speaking, it may be said that the reason bond durability may drop is a hydrolytic reaction damaging the chemical bond between the silica contained in the glass ceramics and the silane-coupling agent. THREE PRODUCTS COVERING VIRTUALLY EVERY NEED By combining these technologies and ingredients smartly, we have succeeded in developing a resin cement portfolio that covers virtually every need. With PANAVIA™ V5, PANAVIA™ SA Cement Universal and PANAVIA™ Veneer LC, it is possible to treat a wide variety of cases. The products allow for the luting of various types of restorations, prosthetic appliances and for the placement of posts and produce great outcomes if used properly according to the instructions for use. PANAVIA™ V5 is the resin cement that has the widest range of uses among the three cement systems just mentioned. It covers almost all the intended uses of the other two cements. Therefore, it is possible for the dental practitioner to choose the right cement system for treatment, according to the cases arriving at the clinic and patient needs, from among these three major resin cement products: PANAVIA™ V5, a resin cement with a wide range of applications; PANAVIA™ SA Cement Universal, a simple and easy-handling self-adhesive resin cement; and PANAVIA™ Veneer LC when there is a need to bond laminate veneers. EXPLORING NEW OPPORTUNITIES The good thing about developing technologies in a company like Kuraray Noritake Dental is that their application is not limited to a certain product or product group. The R&D Department always carries out research on how to leverage the benefits of the technologies in other applications. Take, for example, KATANA™ Cleaner, which was released in 2019. This cleaning agent can be used to remove saliva, blood, temporary cement, or other contaminants that can adhere to the surfaces of teeth or prosthetic devices during trial fitting and temporary cementation of a prosthetic device. This unique product has been developed by taking advantage of the surfactant function of the MDP monomer. CONCLUSION Hence, it is mainly our long-standing knowledge and experience in the development of dental resin cements and adhesive solutions that provides for the excellence of the current PANAVIA™ Portfolio. We know how to improve on existing technologies, to never stop developing new ones and to continuously look for the best way to combine proven and new components to obtain the best possible outcomes. In the steps of the product development procedure, clinical tests are conducted and feedback from dental practitioners is gathered in order to take into account the extreme conditions found in the oral environment. In the past 40 years, this strategy has proven successful, and we are sure it will help us to develop many other innovative products that offer ideal support in striving to improve the oral health of patients.
News Feature Esthetic Colorant – first impressions by Francesco Napolitano Sep 12, 2023 As an instructor and consultant for Kuraray Noritake Italia, I received my first set of Esthetic Colorant dyeing liquids for testing purposes approximately one year ago. When the package arrived in the dental laboratory, it made me curious immediately and I simply could not wait to start using the colourful liquids on KATANA™ Zirconia. I started with some simple test work, applied the basic liquids like A Plus to pre-sintered zirconia, played a little with Gray and Violet and put the structures into the sintering furnace to reveal the obtained effects. The outcome was so convincing that I was sure Esthetic Colorant would be a great addition to the range of materials used in my laboratory for the production of zirconia restorations. The liquids would support me ideally by giving more character to my restorations from the inside. To my mind, the use of Esthetic Colorant is convenient for two reasons: KATANA™ Zirconia is a very compact material, even in its green (pre-sintered) state. This property is not only responsible for a great performance in terms of milling accuracy, stability and surface quality, but also provides for a controlled penetration of the effect liquids into the structure. They neither diffuse too deep into the zirconia nor do they spread too much on the surface. Esthetic Colorants are water-based infiltrating liquids with a very light colour effect. Hence, they do not create such marked characterization effects like liquids from other companies. This is a huge advantage in my eyes, because I can characterize my zirconia internally without exaggerating. This allows me to copy lightly to moderately intensive effects, while giving depth to some areas of the tooth. Great examples are the occlusal table of a posterior restoration or incisal effects in the anterior region. In addition, I am able to shield the grayish effect resulting from a metal post or discoloured abutment tooth with the Esthetic Colorant Opaque applied to the inner surface of a restoration. In short: I think Esthetic Colorants are fantastic. Just try them out yourself, because seeing is believing! DT FRANCESCO NAPOLITANO Nola (NA) ITALY
News Feature Time to celebrate PANAVIA’s 40th anniversary Sep 4, 2023 Interview with Mitsunobu KawashimaManager, Technology Division of Kuraray Noritake Dental Inc. In 1983 – exactly 40 years ago – PANAVIA™ EX was introduced in Japan as the first product of the PANAVIA™ family and the first product containing the original MDP monomer. Since then, the PANAVIA™ family of resin cements has been continuously expanded by developing new resin-cement materials that are precisely adjusted to the contemporary demands of dental practitioners. The current line-up of easy-to-use, high-performance adhesive luting materials is globally available and used by dental practitioners with high quality standards. We had a conversation with Mr. Mitsunobu Kawashima about PANAVIA™ EX as a ground-breaking innovation in the field of dental resin cements and subsequent steps toward the current well-balanced resin cement portfolio. He is currently responsible for the development of chair-side materials in the Technology Division of Kuraray Noritake Dental Inc. (Kuraray Noritake Dental) and has been part of the team developing the many products of the PANAVIA™ family for more than 30 years. The resin cements developed by the company before the introduction of PANAVIA™ EX contained the adhesive monomer Phenyl-P. Why did you decide not to use Phenyl-P in the new formulation? At the time we decided to develop PANAVIA™ EX, we were engaged in the development of new adhesive monomers to replace Phenyl-P. The main aim of this project was an improvement of our products’ bond strength to metal alloys and dentin. Among the new adhesive monomers being developed, we decided to use the MDP monomer, because it features excellent bonding to tooth structure and metal alloys used in dentistry, as well as superb resistance to water. Incidentally, our first products to contain the original MDP monomer were the resin cement PANAVIA™ EX and the bonding agent CLEARFIL™ NEW BOND. Where did the name PANAVIA™ come from? The name “PANAVIA™” is a compound word consisting of “PAN” and “VIA”. The former is of Greek origin, and the latter is of Latin origin. “PAN” means “everything” and “VIA” means “way” or “method”. Consequently, the name “PANAVIA” describes a “method for bonding everything”; it represents our desire to have products launched under the umbrella of the PANAVIA™ brand recognized as dental materials that can bond to all types of restoration and tooth structure. Would you please tell us the story behind the development of PANAVIA™ EX? Back in the early 1980s, it was indispensable for us to develop new adhesive monomers as a part of our project to develop a new resin cement with unprecedented adhesive properties. In this context, we conducted a comprehensive literature search for compounds thought to be involved in adhesion. At the same time, we carried out a variety of R&D activities, including basic research to quantitatively clarify the relationship between the molecular structures of monomers and their adhesive qualities, synthesis trials of various monomers and bond strength tests. Consequently, we succeeded in developing the MDP monomer that had the physical properties we were working to obtain. Following the development of that MDP adhesive monomer, we were finally able to create PANAVIA™ EX in our laboratory. In early 1982, we completed the first prototype of PANAVIA™ EX for external evaluation and asked a dental college in Japan to evaluate it. He found that the prototype cement might cure too quickly in clinical use. This was due to the fact that we had not taken into account the difference between room temperature and intraoral temperature, which has a huge impact on the curing time. This error led us to recognize how important clinical evaluations are during the development of dental materials. To this day, we continue to place great importance on the opinions of clinicians whenever a new material is being developed. The name “PANAVIA™” is a compound word consisting of “PAN” and “VIA”. The former is of Greek origin, and the latter is of Latin origin. “PAN” means “everything” and “VIA” means “way” or “method”. What were the key technological features of this new PANAVIA™ EX cementation system? The system had five key features: Appropriate film thickness, appropriate flow properties of the paste, radiopacity, improved bond strength and improved surface-cure characteristics. At the time that PANAVIA™ EX was developed, a film thickness of 30 μm or less was desired for luting cements. The largest components we wanted to use in the formulation – the silica filler particles present in our composite resin – had a maximum particle diameter of 50 μm. We were able to achieve a film thickness of 30 μm or less by significantly extending the silica grinding time, which made the filler particles much finer. An appropriate paste consistency – a low level of viscosity and good flowability – was achieved by using low-viscosity monomers for PANAVIA™ EX. In order to make the cement radiopaque, we dispersed radiopaque filler within the powder component. In fact, we were convinced that it was essential to be able to check for the presence of excess cement under the gingival margins after a restoration was placed. The increase in bond strength was achieved by blending the MDP monomer into the liquid component. What about the surface-cure characteristics of the cement? Every dental practitioner knows that the surface of resin cements must be protected from oxygen in the air in order to cure properly. For this purpose, we developed OXYGUARD, a water-soluble gel material. It is applied to the restoration margins to cover the unpolymerized resin cement surface and protect it from exposure to oxygen. In this way, the formation of an oxygen inhibition layer – a layer of uncured resin on the surface that compromises the marginal integrity of the restoration – is prevented and an intact, fully polymerized cement surface can develop. In this way, the use of OXYGUARD has contributed greatly to improving the cure characteristics of cements. What do today’s PANAVIA™ products and PANAVIA™ EX have in common? The PANAVIA™ family of products, including PANAVIA™ EX, share the concept of “being a resin cement product that opens new dimensions in dentistry”. PANAVIA™ EX was our first resin cement, and it was conceived as a cement for a new era. It can bond to tooth structure and dental metals very well, thanks to the use of the MDP monomer. This important adhesive monomer is still used today in many of our products. Ever since the launch of PANAVIA™ EX, Kuraray Noritake Dental has continued to take on new challenges and has developed many new products in the growing PANAVIA™ family. These include PANAVIA™ 21, a cement in paste form that has a self-etching primer as an accessory; PANAVIA™ Fluoro Cement, a dual-cure cement paste that releases fluoride; and PANAVIA™ F2.0, which can be used with an LED curing unit. The current portfolio consists of PANAVIA™ V5, which features the substantially improved bonding performance that was achieved after a major review of the basic composition of the series, PANAVIA™ SA Cement Universal, which works as a standalone product without separate primers, and PANAVIA™ Veneer LC, PANAVIA™ family’s latest product. The latter is a light-curing resin cement with the specialized purpose of bonding laminate veneers. In retrospect, what did the introduction of PANAVIA™ EX mean to Kuraray Noritake Dental? In the development of new resin cements, it is important to quickly respond to the rapidly changing trends in the market. Whenever new prosthodontic treatment concepts appear – like adhesive bridges as a minimally invasive treatment option replacing a single tooth – or new restorative materials are introduced, such as different types of ceramics – we need to check if our resin cement systems are compatible with the tasks that come with these changes, as well as possibly developing new ones. Following the launch of PANAVIA™ EX, we received a wide range of feedback from experts working at dental clinics and laboratories. We leveraged this feedback in subsequent development projects, always striving to stick close to the clinical setting. After Kuraray Medical Inc. merged with Noritake Dental Supply Co., Limited, this ethos was embedded in the work ethic of all employees of Kuraray Noritake Dental. Among the new adhesive monomers being developed, we decided to use the MDP monomer, because it features excellent bonding to tooth structure and metal alloys used in dentistry, as well as superb resistance to water. Can you give us a brief history of the PANAVIA™ EX journey to the currently available PANAVIA™ family portfolio? Since the launch of PANAVIA™ EX 40 years ago, six different PANAVIA™ products have been released. Each of them has received high acclaim for their unique features, both in the Japanese resin cement market and abroad. For 40 years, we have been improving PANAVIA™ in response to the demands of the times. We developed a product with increased adhesion when non-retentive preparation designs (adhesive bridges) and smaller bonding surfaces (due to less invasive preparations) became popular. And for users concerned about secondary caries, we developed a material with fluoride-releasing properties. At the same time, we focused strongly on making dental cementation easier by finding ways to make our resin cements bond well to various types of crown-restoration materials, including precious metals and ceramics. During these drives towards improvement, “achieving reliable general luting” has always been at the forefront of our goals. We believe that the successful evolution of the PANAVIA™ brand owes a great deal to our incessant efforts to obtain a high level of bond strength to dentin after chemical polymerisation”. How did the R&D department evolve over the years? Initially, our efforts in the development of dental materials had focused on bonding agents and restorative composite resins. PANAVIA™ EX was just one of our new development projects and only a few staff members were assigned to that product. After PANAVIA™ EX was launched in 1983 and it was accepted worldwide, our product line-up of resin cements was expanded considerably. Consequently, we have increased the number of development staff assigned to resin cements and set up a special development team responsible for the self-adhesive resin cement product line that includes PANAVIA™ SA Cement Universal. As a result, the size of the team assigned to resin cements has expanded substantially. How did production change? When PANAVIA™ EX was launched in 1983, the product was manufactured exclusively for the Japanese market in a relatively small facility. Today, in order to produce all products of the PANAVIA™ family for the global market, we have automated our production facilities and increased the production equipment and systems dedicated to producing the resin cement paste. To support our product quality, we have also set up a quality control system that assures we turn out safe and high-quality products, drawing on over 40 years of technical knowhow and experience in the production of resin cements. For 40 years, we have been improving PANAVIA™ in response to the demands of the times. When did external researchers start showing interest in PANAVIA™? The development of PANAVIA™ EX was carried out with the active participation of researchers at a dental college in Japan, involving such activities as performing basic adhesion tests and experimenting with clinical applications using adhesive bridges. At that time, resin cements that provided a strong bond to tooth structure or metal alloys were not widely used. I believe that overseas researchers were interested in the development of PANAVIA™ EX at a relatively early stage, for this reason. What current concept do you have in mind as you continue developing your adhesive cements? We have two basic central concepts: “Achieving greater bond strength” and “Delivering easier handling characteristics”. I think that the shades of resin cements are also devised in each product in order to get the most of the characteristics of aesthetic restorative materials. At our company, we have embodied “achieving greater bond strength” in PANAVIA™ V5, and “delivering easier handling characteristics” in PANAVIA™ SA Cement Universal. We will continue to explore the development and introduction of various new technological applications, to bring even higher performance products to market. What do you think is the strength of Kuraray Noritake Dental’s R&D team? We conduct R&D activities continuously, focusing on the development of luting materials. In our product development department, the same person is often responsible for one product category over long period of time. For example, I have been engaged in the development of PANAVIA™ products for much of my time with the company. The result is that each person in the development department can be said to be an expert in a certain category of products. They leverage the technical knowledge acquired in the past for the development of new products, resulting in entirely new discoveries. Do you have any ideas about what the future of PANAVIA™ will be? We will continue to focus on the development of even simpler, easier-to-use resin cements suitable for a wide range of applications – products based on the concept of universality. This should allow users to focus more on the actual treatment than ever before, while of course delivering a strong and durable bond between the tooth structure and the restoration. MITSUNOBU KAWASHIMA
Clinical Cases, Chairside Optimizing functional and esthetic parameters in veneer cementation Aug 29, 2023 By Dr. Clarence Tam, HBSC, DDS, AAACD, FIADFE The use of both porcelain veneers to improve and restore the shape, shade and visual position of anterior teeth is a common technique in esthetic dentistry. The biomimetic aim in the restoration of teeth is not only the cosmetic domain, but also functional considerations. It is critical to note that the intact enamel shell of the palatal and facial walls with respect to anterior teeth are responsible for its innate flexural resistance. When dental structure has been violated by endodontic access, caries and/or trauma, every effort must be made to preserve the residual structure and strive to restore or exceed the baseline performance levels of a virgin tooth. BACKGROUND A 55 year old ASA II female with a medical history significant only for controlled hypertension presented to the practice for teeth whitening. It was foreseen that dental bleaching would not have an effect on the shade of a pre-existing porcelain veneer on tooth 1.2, and that this would need to be retreated following the procedure especially if the shade value changes were significant. The patient started with a baseline shade of VITA* 1M1:2M1; 50:50 ratio in the upper anterior region and 1M1 in the lower anterior region. Following a nightguard bleaching protocol with 10% carbamide peroxide worn overnight for 3-4 weeks, the patient succeeded in achieving a VITA* 0M3 shade in both upper and lower arches. As a result, there was a significant value discrepancy between the veneered tooth 1.2 and the adjacent teeth, and also increased chroma noted on the contralateral tooth 2.2 due to a facially-involved Class III composite restoration. This latter tooth also did not match the contralateral tooth in dimension and thus the decision was made to treat both lateral incisors with bonded lithium disilicate laminate veneers. The canine adjacent (2.3) featured localized mild to moderate cusp tip attrition, but the patient did not want to address this until following the currently-discussed veneers were placed. The goal of smile design at this stage is to ultimately establish bilateral harmony with the view to place an additional indirect restoration restoring the facial volume and cusp tip deficiency of tooth 2.3 in the near future. PROCEDURE A digital smile design protocol was not required for the initial intention, which was individual treatment of the lateral incisors, as slight variation is permitted in this tooth type, being a personality and gender marker of the smile. Prior to anesthesia, the target shade was selected using retracted photos featuring both polarized and unpolarized selections. The photographs were prepared for digital shade calibration by taking reference views with an 18% neutral gray white balance card (Fig. 1). Fig. 1. Reference photograph taken with a 18% neutral gray card. The basic body shade was VITA* 0M2 with an ingot shade of BL2. The patient was anesthetized using 1.5 carpules of a 2% Lignocaine solution with 1:100,000 epinephrine before affixing a rubber dam in a split dam orientation. The veneer on tooth 1.2 was sectioned and removed from tooth 1.2 and a minimally-invasive veneer preparation completed on tooth 2.2 (Fig. 2). Partial replacement of the old composite resin restoration was completed on the mesioincisobuccopalatal aspect of tooth 12 with the intact segment maintained. Adhesion to old composite was achieved using both micro particle abrasion and a silane coupling agent (CLEARFIL™ CERAMIC PRIMER PLUS, Kuraray Noritake Dental Inc.). Margins were refined and retraction cords soaked in an aluminum chloride solution and packed. Preparation stump shades were recorded. Final impressions were taken using both light and heavy body polyvinylsiloxane in a metal tray. The patient was provisionalized and sent away with instructions to verify the shade at the laboratory at the bisque bake stage. The models prepared by the laboratory verify the minimally-invasive nature of the case. Fig. 2. Veneer preparation tooth 1.2, 2.2. On receipt of the case, the patient was anesthetized and the provisionals removed. The preparations were debrided and prepared for bonding by abrading the surfaces using a 27 micron aluminum oxide powder at 30-40 psi. The veneers were assessed using a clear glycerin try-in paste (PANAVIA™ V5 Try-in Paste Clear, Kuraray Noritake Dental Inc.). Retraction cords were packed and the intaglio surface of the restorations treated using a 5% hydrofluoric acid for 20 seconds prior to application of a 10-MDP-containing silane coupling agent (CLEARFIL™ CERAMIC PRIMER PLUS, Kuraray Noritake Dental Inc.) (Fig. 3). The tooth surface was etched using 33% orthophosphoric acid for 20 seconds and rinsed. A 10-MDP-containing primer was applied to the tooth (PANAVIA™ V5 Tooth Primer, Kuraray Noritake Dental Inc.) (Fig. 4) and air dried as per manufacturer’s instructions. Veneer cement was loaded (PANAVIA™ Veneer LC Paste Clear, Kuraray Noritake Dental Inc.) (Fig. 5) and the veneer seated. The excess cement featured a non-slumpy character and maintained the veneer well in place during all margin verification exercises prior to a 1 second tack cure (Fig. 6). Fig. 3. CLEARFIL™ CERAMIC PRIMER PLUS applied to intaglio surfaces of veneers. Fig. 4. PANAVIA™ V5 Tooth Primer application to etched tooth surfaces. Fig. 5. PANAVIA™ Veneer LC Paste Clear shade loaded onto prepared intaglio surfaces of veneers. Fig. 6. PANAVIA™ Veneer LC Paste immediately after seating. Note the viscous, non-slumpy nature of the cement, which allows for ease of removal under both wet and gel-phase options. The cement was rendered into a gel state, which facilitated “clump” or en masse removal of cement with minimal cleanup required (Fig. 7). The margins were coated using a clear glycerin gel prior to final curing to eliminate the oxygen inhibition layer (Fig. 8). Fig. 7. Excess cement removal after tack curing for 1 second. Fig. 8. Final curing of veneers from both palatal and facial aspects simultaneously. The margins were finished and polished to high shine and the occlusion of the restorations verified as conformative. The post-operative views show excellent esthetic marginal integration (Fig. 9). Fig. 9. Post-operative esthetic integration of veneers on 1.2 and 2.2. On polarized photograph reassessment, the restorations are well-integrated into the new smile esthetically and functionally (Fig. 10), now awaiting esthetic augmentation of tooth 2.3 to match the contralateral canine. FINAL SITUATION Fig. 10. Final result with polarized photography on reassessment. RATIONALE FOR MATERIAL SELECTION Porcelain is often the chosen material for prosthetic dental veneers due to its innate stiffness in thin cross section, ability to modify and transmit light for optimal internal refraction and its bondability by way of adhesive protocols to composite resin. This trifecta allows for a maximal preservation of residual tooth structure whilst bolstering its physical function relative to flexural performance1. The elastic modulus of a tooth can be restored to 96% of its control virgin value if the facial enamel is replaced with a bonded porcelain laminate veneer2. The elastic modulus of lithium disilicate is 94 GPa whereas that of intact enamel is 84 GPa. The elastic modulus of dentin has been found to range from 10-25 GPa, whereas that of the hybrid layer can vary widely, indeed from 7.5 GPa to 13.5 GPa in a study by Pongprueska et al3. This low flexural resistance range reflects that of deep dentin and not that of superficial dentin, which does not reflect an ideal situation where a laminate veneer is bonded in as much enamel as possible, or in the worst case to superficial dentin. Maximal flexural strength of the hybrid layer is invaluable from a biomimetic standpoint. PANAVIA™ V5 Tooth Primer (Kuraray Noritake Dental Inc.) incorporates the use of the original 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) monomer, which elicits a pattern of stable calcium-phosphate nanolayering known as Superdentin, an acid-base resistant zone that is about 600x more insoluble than the monomer 4-MET, which is found in many other adhesives. Indeed, PANAVIA™ V5 Tooth Primer is used solely in conjunction with Kuraray Noritake Dental Inc. PANAVIA™ V5 cement and PANAVIA™ Veneer LC which both allow the primer to act as a bond without the need to cure the layer prior to cementation of the indirect restoration due to its dual cure potential when married together. If a bonding agent would be preferred, CLEARFIL™ Universal Bond Quick (Kuraray Noritake Dental Inc.), a multi-modal adhesive that also contains the essential amide monomer and 10-MDP components created by Kuraray Noritake Dental Inc., can be used. Of note, CLEARFIL™ Universal Bond Quick features exceptional flexural strength due to the accentuated cross-linking during polymerization afforded by the amide monomers, on the order of 120 MPa by itself4. PANAVIA™ Veneer LC is a cement system that features cutting edge technology that provides excellent esthetics and adhesive stability of your indirect restorations, whilst allowing a stress free workflow. It is a cement system that is a game changer; one that allows you to restore confidence in the patient, strength in the tooth-restoration interface, and bolsters your clinical confidence in the delivery of biomimetic excellence. Dentist: CLARENCE TAM References 1. Magne P, Douglas WH. Rationalization of esthetic restorative dentistry based on biomimetics. J Esthet Dent. 1999;11(1):5-15. doi: 10.1111/j.1708-8240.1999.tb00371.x. PMID: 10337285.2. Magne P, Douglas WH. Porcelain veneers: dentin bonding optimization and biomimetic recovery of the crown. Int J Prosthodont. 1999 Mar-Apr;12(2):111-21. PMID: 10371912.3. Pongprueksa P, Kuphasuk W, Senawongse P. The elastic moduli across various types of resin/dentin interfaces. Dent Mater. 2008 Aug;24(8):1102-6. doi: 10.1016/j.dental.2007.12.008. Epub 2008 Mar 4. PMID: 18304626.4. Source: Kuraray Noritake Dental Inc. Samples (beam shape; 25 x 2 x 2 mm): The solvents of each material were removed by blowing mild air prior to the test.
News Feature TEETHMATE™ DESENSITIZER Aug 22, 2023 Eight-time DENTAL ADVISOR Top Product selection provides effective relief for a painful condition Dentine hypersensitivity is a painful condition that affects millions of people worldwide. It generally occurs when tubules are exposed for any number of reasons, including gingival recession, dental erosion or excessive tooth brushing. It can also be a side effect of professional tooth cleaning, scaling and root planning, tooth whitening, or restorative procedures. TEETHMATE™ DESENSITIZER, which was honored by DENTAL ADVISOR every year from 2015 to 2022 as a Top Product selection, allows an effective non-invasive approach to the treatment of hypersensitivity when used as directed by dental professionals. TEETHMATE™ DESENSITIZER is designed to crystalize hydroxyapatite (HAp), a mineral that is naturally found in enamel and dentin, and is the human body’s strongest material. When applied to exposed, mechanically treated, or freshly prepared dentin, the calcium phosphate based mixture blocks the exposed tubules and provides immediate pain relief. During setting, HAp is formed, providing for long-term prevention of hypersensitivity. Further, when used in the context of restorative treatment, TEETHMATE™ DESENSITIZER does not have a negative effect on the bond strength of subsequently utilized dental adhesives or cements. DENTAL ADVISOR clinical study found TEETHMATE™ DESENSITIZER effective in providing hypersensitivity relief immediately following and for up to six months after application. The study evaluated 27 patients diagnosed with gingival recession-related hypersensitivity, which was diagnosed using thermal testing with cold air. For the initial assessment, patients were asked to evaluate their level and frequency of hypersensitivity per tooth on a five-point scale. They were questioned about their level of sensitivity immediately after TEETHMATE™ DESENSITIZER was applied, according to the instructions for use, and again six months later. At baseline, 91 percent of the patients stated that they had no or only mild, sporadic sensitivity, which was still the case for 85 percent after six months. This natural, tissue-friendly product is highly biocompatible and is free of gum irritants such as glutaraldehyde or methacrylates. It is indicated for use by dental professionals for all sensitivity challenges in everyday practice, including prevention of cervical hypersensitivity before/after bleaching, scaling or root planning, and underneath restorations. The Top Product or Preferred Product Awards conferred by US-based DENTAL ADVISOR were introduced to support potential users in identifying high-quality dental materials and determining which among them are best suited to fulfill their individual requirements. Awards are based on results of its practice-based clinical evaluations and product performance tests, which are conducted shortly after product launch. Among products honored this year are five from Kuraray Noritake Dental Inc.: CLEARFIL™ SE Protect, CLEARFIL MAJESTY™ ES Flow (Low), and PANAVIA™ SA Cement Universal were selected as Top Products; and CLEARFIL™ Universal Bond Quick and CLEARFIL™ CERAMIC PRIMER PLUS were chosen as Preferred Products.
News Feature Innovative resin cements forming the basis of minimally invasive prosthodontics Aug 15, 2023 Article by Dr. Adham Elsayed High-performance adhesive resin cements are often the enablers of minimally invasive prosthodontic treatments. When the main aim is to save as much healthy tooth structure as possible, preparation designs that offer sufficient macro-mechanical retention for conventional cements are usually abandoned. The designs chosen instead need to rely on a strong and durable chemical adhesion established between the tooth structure and the restorative material – a task successfully accomplished by modern adhesive resin cement systems. An excellent example of a minimally invasive, non-retentive preparation and restoration design is the single-retainer resin-bonded fixed dental prosthesis (RBFDPs), nowadays usually made of 3Y-TZP zirconia. With its single cantilever bonded to the oral and proximal enamel surface of an adjacent tooth, it requires minimal to no healthy tooth structure removal. The RBFDP is often used to replace a congenitally missing tooth – in many cases a maxillary lateral incisor – in young patients with incomplete dentoalveolar development and narrow edentulous spaces unsuitable for conventional implant placement1 (Fig. 1 and 2). Additional factors hindering implant therapy – like an insufficient bone volume or angulated roots – are also not an issue for this type of restoration. And compared to orthodontic gap closure, the treatment approach with a RBFDP is less risky, as it does not affect the vertical jaw relationship, prevent canine guidance or compromise the aesthetic appearance2. Finally, it is much less invasive than conventional FDPs, which is usually not a treatment option for young patients in the anterior region. The level of patient satisfaction and the success rates of this treatment approach are impressive3-7. Fig. 1-2. Replacement of both congenitally missing maxillary lateral incisors with single-retainer zirconia RBFDPs after soft tissue augmentation and gingival margin correction. Despite the numerous advantages and excellent clinical performance – single-retainer RBFDP made of zirconia showed a survival of 98.2 percent and a success rate of 92.0 percent after ten years4 – many dental practitioners still opt for alternative treatment options. The reason may be a lack of trust in the bond strength and durability to zirconia. However, this bond can be very strong and durable – provided that a few rules are respected. HOW TO ESTABLISH A STRONG BOND TO THE TOOTH STRUCTURE In order to decide whether a missing tooth may be successfully replaced by a single-retainer RBFDP made of zirconia, the abutment tooth should be examined carefully. It needs to be vital and largely free of caries or direct restorations, while the oral enamel surface must be large enough for resin bonding1. In addition, the space required for the placement of a retainer wing (thickness: about 0.7 mm) needs to be available, as a non-contact design is important for the success of the restoration. Among the preparation designs described in the literature is a lingual veneer and small proximal box preparation with retentive elements located in the enamel only1, or no preparation at all7. For restoration placement, the abutment tooth is treated as usual: after cleaning e.g., with fluoride-free prophylaxis paste, phosphoric acid etchant is applied to the bonding surface, which is then thoroughly rinsed and dried. HOW TO ESTABLISH A STRONG BOND TO THE RESTORATION The recommended pre-treatment for the bonding surface of the retainer wing made of zirconia is small-particle (50 μm) aluminium oxide air-abrasion at a low pressure (approx. 1 bar)8,9, followed by ultrasonic cleaning. Figures 3 (A-E) shows the sequence of surface treatment of zirconia restorations. As a visual aid for a controlled air-abrasion treatment, the marking of the surface with a pen has proven its worth. The whole air-abrasion procedure should be carried out after try-in, during which the tooth surface and the restoration usually becomes contaminated through contact with saliva and sometimes blood. Proteins present in saliva and blood that contaminate the bonding surface are safely removed in this way, while the required surface modification necessary to establish a strong and durable bond to the selected resin cement system is achieved10. FIGURE 3: SEQUENCE OF SURFACE TREATMENT OF ZIRCONIA RESTORATION. Fig. 3A. Cleaning of the restoration prior to luting with water steam cleaner. Fig. 3B. Marking of the bonding surface as an visual aid for the air-abrasion. Fig. 3C. Air-abrasion with 50-μm Al2O3 particles with 1 bar pressure. Fig. 3D. Application of a primer containing 10-MDP. Fig. 3E. Application of the composite resin cement. WHICH RESIN CEMENT SYSTEM TO CHOOSE Subsequently, the components of the resin cement system are applied. Regarding the selection of the system, it is generally recommended to use a restoration primer or resin cement that contains 10-Methacryloyloxydecyl dihydrogen phosphate (10-MDP)11. In this way, a high-quality chemical bond is established. Among the resin cement systems used in the available long-term clinical studies is PANAVIA™ 21 (Kuraray Noritake Dental Inc.)4-6. Launched in 1993, this anaerobic-curing adhesive resin cement contains several important technologies like the MDP monomer and the Touch Cure Technology found in PANAVIA™ V5, the state-of-the art dual-cure multi-bottle adhesive resin cement system of the company. In order to further improve the bonding performance of this present product, however, the team of developers reviewed the basic composition, updated existing technologies and combined them with completely new ingredients. Even with PANAVIA™ 21 introduced 30 years ago, high success rates were obtained4-6. The few observed failures were mainly due to chipping of the veneering ceramic or debonding. Sometimes caused by traumatic incidents, the debondings resulted in no further damage and the restorations were simply rebonded using the same cementation system and procedure. One might expect that with its improved formulation, PANAVIA™ V5 will offer an even stronger and more durable bond than predecessor products, so that it is even better suited for such demanding applications as the resin-bonded fixed dental prosthesis. In a pilot study, this assumption was confirmed7. Without any preparation of the abutment tooth, but a defined size of the bonding surface of at least 35 mm2, the team of researchers placed 24 monolithic zirconia resin-bonded bridges (made of KATANA™ Zirconia HT) to replace congenitally missing lateral incisors. The palatal sides of the central incisors were cleaned with pumice paste and treated with phosphoric acid, while the bonding surfaces of the restorations were sandblasted with aluminum oxide particles (50 μm, 2.5 bar pressure). Afterwards, twelve restorations were luted with PANAVIA™ V5, the other twelve with PANAVIA™ F2.0 (another earlier-version resin cement from Kuraray Noritake Dental Inc.). After an observation period of 32 to 50.47 months, the success and survival rates in the PANAVIA™ V5 group were 100 percent. In the other group, a connector fracture, a chipping and two debondings occurred. Based on these results, the authors of the publication concluded that “it has been seen that the new generation cement (PANAVIA™ V5) is more successful”7. CONCLUSION For many years, minimally invasive indirect restorative approaches like the replacement of missing incisors with resin-bonded fixed dental prostheses have been performed successfully by some dental practitioners. Many others, however, still seem to be hesitant whether these approaches will lead to the desired results in their hands. The available clinical study results, however, have confirmed that the procedure is highly advantageous and successful, while ongoing development efforts in the field of adhesive resin cements have led to products further decreasing the failure rates related to debonding. Even if a debonding occurs, however, no damage is usually done, so that the restoration can be rebonded again with little effort. These findings – together with the well-known benefits of minimally invasive dentistry in general – should encourage dental practitioners to start exploring the full potential of adhesive dentistry for themselves. In this context, PANAVIA™ V5 is definitely an excellent choice. References 1. Sasse M, Kern M. All-ceramic resin-bonded fixed dental prostheses: treatment planning, clinical procedures, and outcome. Quintessence Int. 2014 Apr;45(4):291-7. doi: 10.3290/j.qi.a31328. PMID: 24570997.2. Tetsch J, Spilker L, Mohrhardt S, Terheyden H (2020) Implant Therapy for Solitary and Multiple Dental Ageneses. Int J Dent Oral Health 6(6): dx.doi. org/10.16966/2378-7090.332.3. Wei YR, Wang XD, Zhang Q, Li XX, Blatz MB, Jian YT, Zhao K. Clinical performance of anterior resin-bonded fixed dental prostheses with different framework designs: A systematic review and meta-analysis. J Dent. 2016 Apr;47:1-7. doi: 10.1016/j.jdent.2016.02.003. Epub 2016 Feb 11. PMID: 26875611.4. Kern M, Passia N, Sasse M, Yazigi C. Ten-year outcome of zirconia ceramic cantilever resin-bonded fixed dental prostheses and the influence of the reasons for missing incisors. J Dent. 2017 Oct;65:51-55. doi: 10.1016/j.jdent.2017.07.003. Epub 2017 Jul 5. PMID: 28688950.5. Kern M. Fifteen-year survival of anterior all-ceramic cantilever resin-bonded fixed dental prostheses. J Dent. 2017 Jan;56:133-135.6. Sasse M, Kern M. Survival of anterior cantilevered all-ceramic resin-bonded fixed dental prostheses made from zirconia ceramic. J Dent. 2014 Jun;42(6):660-3. doi: 10.1016/j.jdent.2014.02.021. Epub 2014 Mar 5. PMID: 24613605.7. Bilir H, Yuzbasioglu E, Sayar G, Kilinc DD, Bag HGG, Özcan M. CAD/CAM single-retainer monolithic zirconia ceramic resin-bonded fixed partial dentures bonded with two different resin cements: Up to 40 months clinical results of a randomized-controlled pilot study. J Esthet Restor Dent. 2022 Oct;34(7):1122-1131. doi: 10.1111/jerd.12945. Epub 2022 Aug 3. PMID: 35920051.8. Kern M. Bonding to oxide ceramics—laboratory testing versus clinical outcome. Dent Mater. 2015 Jan;31(1):8-14. doi: 10.1016/j.dental.2014.06.007. Epub 2014 Jul 21. PMID: 25059831.9. Kern M, Beuer F, Frankenberger R, Kohal RJ, Kunzelmann KH, Mehl A, Pospiech P, Reis B. All-ceramics at a glance. An introduction to the indications, material selection, preparation and insertion techniques for all-ceramic restorations. Arbeitsgemeinschaft für Keramik in der Zahnheilkunde. 3rd English edition, January 2017.10. Comino-Garayoa R, Peláez J, Tobar C, Rodríguez V, Suárez MJ. Adhesion to Zirconia: A Systematic Review of Surface Pretreatments and Resin Cements. Materials (Basel). 2021 May 22;14(11):2751.11. Al-Bermani ASA, Quigley NP, Ha WN. Do zirconia single-retainer resin-bonded fixed dental prostheses present a viable treatment option for the replacement of missing anterior teeth? A systematic review and meta-analysis. J Prosthet Dent. 2021 Dec 7:S0022-3913(21)00588-6. doi: 10.1016/j.prosdent.2021.10.015. Epub ahead of print. PMID: 34893319.